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Abstract—A query facet is a significant list of information nuggets that explains an underlying aspect of a query. Existing algorithms

mine facets of a query by extracting frequent lists contained in top search results. The coverage of facets and facet items mined by

these kind of methods might be limited, because only a small number of search results are used. In order to solve this problem, we

propose mining query facets by using knowledge bases which contain high-quality structured data. Specifically, we first generate facets

based on the properties of the entities which are contained in Freebase and correspond to the query. Second, we mine initial query

facets from search results, then expanding them by finding similar entities from Freebase. Experimental results show that our proposed

method can significantly improve the coverage of facet items over the state-of-the-art algorithms.

Index Terms—Query facets, knowledge bases, query dimensions

Ç

1 INTRODUCTION

WITH the help of search engines, users can quickly find
web pages containing the information they want by

issuing queries and receiving search results comprised of
“ten blue links”. However, previous studies show that
many users are not satisfied with this kind of conventional
search result pages [1], [2], [3]. Users often have to click and
view many documents to summarize the information they
are seeking, especially when they want to learn about a
topic that covers different aspects. This usually takes a lot of
time and troubles the users. An automatic summarization
of search results may help users understand the query with-
out browsing many pages, hence could save their time.

Mining query facets (or query dimensions) is an emerg-
ing approach to solve the problem above. Table 1 shows the
top facets for query “Pentax,” “Beijing subway,” and “Tom
Cruise”. Pentax is a Japanese camera brand. Its query facets
cover aspects about related camera brands, Pentax’s SLR
cameras, Pentax’s small digital cameras, and different kinds
of optical devices. These query facets help users learn about
the topic “Pentax,” and at the same time, users can further
narrow down their information needs based on these facets.

Existing query facet mining algorithms mainly rely on
the top search results from search engines [4], [5], [6], [7].
Dou et al. first introduced the concept of query dimensions
[4], which is the same concept as query facet discussed in
this paper. They proposed QDMiner, a system that can
automatically mine query facets by aggregating frequent
lists contained in the results. The lists are extracted by
HTML tags (like <select> and <table>), text patterns, and
repeat content blocks contained in web pages. Kong et al.

[6] proposed two supervised methods, namely QF-I and
QF-J, to mine query facets from the results. In all these exist-
ing solutions, facet items are extracted from the top search
results from a search engine (e.g., top 100 search results
from Bing.com). More specifically, facet items are extracted
from the lists contained in the results. The problem is that
the coverage of facets mined using this kind of methods
might be limited, because some useful words or phrases
might not appear in a list within the search results used and
they have no opportunity to be mined.

In order to solve this problem, we propose leveraging a
knowledge base as a complementary data source to
improve the quality of query facets. Knowledge bases con-
tain high-quality structured information such as entities
and their properties and are especially useful when the
query is related to an entity. We propose using both knowl-
edge bases and search results to mine query facets in this
paper. The reason why we don’t abandon search results is
that search results reflect user intent and provide abundant
context for facet generation and expansion. Our target is to
improve the recall of facet and facet items by utilizing enti-
ties and their properties contained in knowledge bases, and
at the same time, make sure that the accuracy of facet items
are not harmed too much. Our approach consists of two
methods which are facet generation and facet expansion. In
facet generation, we directly use properties of entities corre-
sponding to a query as its facet candidates. In facet expan-
sion, we expand initial facets mined by traditional
algorithms such as QDMiner to find more similar items con-
tained in a knowledge base such as Freebase.1 The facets
constructed by the two methods are further merged and
ranked to generate final query facets. More specifically,

(1) Facet Generation: We propose directly mining query
facet candidates from Freebase. Given a query, we first
retrieve relevant entities from Freebase, then obtain all
the properties of these entities. For example, for the
query “Beijing subway”, we first retrieve entity Beijing
Subway and its properties. These properties include
Transit Lines with values such as Line 1, Line 2, Airport
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Express, and etc. We call these properties as direct
properties. Sometimes, such properties are not suffi-
cient. To get more properties of an entity, we further
obtain “properties of properties”. For example, each
subway line in the example above has a property Sta-
tions, then All the Stations of Each Line could be com-
bined as an extended property of entity Beijing
Subway. We denote this kind of properties as second-
hop properties. In the same way, we could obtain
multi-hop properties. In this paper, we use both direct
and second-hop properties as facet candidates. Note
that if query matches no entities, no candidates will be
generated in this step.

(2) Facet Expansion: We use QDMiner to mine initial
query facets, then use Freebase to expand these facets
to get similar items. We propose two different ways to
expand a facet. First, we try to assign each facet to a
suitable property of the entities corresponding to the
query, and add the target entities of the property to
enrich the facet. We denote this method as property
based facet expansion. For example, for the query
“Michael Jackson,” an initial facet mined by QDMiner
is comprised of his compositions “you rock my
world,” “butterflies,” “man in the mirror,” “thriller,”
“cry,” etc. We find that entity Michael Jackson has a
propertyNominated Workswhich covers most items in
this facet, hence we could use other target entities of
this property to enrich this initial facet. When no rele-
vant entities or properties are retrieved, we use the sec-
ondway—type based facet expansion. We find a common
type that covers most facet items. For example,
“Kristen Stewart,” “Robert Pattinson,” “Taylor
Lautner,” etc. is a facet of query “Eclipse.” The best
type coveringmost facet items in Freebase isCelebrities.
However, this type is too broad and it contains many
entities which are irrelevant to the facet. Thus we pro-
pose mining some constraints that could be used
togetherwith the type to retrieve relevant entities from
Freebase more specifically. The constraints grasp the
relationship between facet and the query more pre-
cisely, which could guarantee the accuracy of expan-
sion. In the example above, we find out that all initial
facet items are actually actors of the film Eclipse, hence
we use a constraint (Eclipse 2 Films Starring In) which
means that the celebrity must have a property Films

Starring In and Eclipsemust appear in the target values
of the property to narrowdown semantic scope.

In this paper, we use both facet generation and
facet expansion to mine query facets rather than just
one of them. Facet generation outputs candidates
only for queries matching with Freebase entities
while type based expansion is more general. Facet
generation may introduce some new facets contained
in Freebase which are complement to the ones mined
by traditional methods.

(3) The facet candidates constructed by facet generation
and expansion are further merged, because there
might be duplicate items within these candidates. We
then re-weight the final facets by checking the occur-
rence of the facet itemswithin top search results.

We denote the solution above which generates new fac-
ets and expand existing facets using Freebase with QDMKB

in this paper. Please note that we actually leverage the
advantages of both knowledge bases and search results to
generate high-quality query facets, hence QDMKB has high
potential to outperform the state-of-the-art algorithms
which solely use search results for facet mining. The contri-
butions are two-fold:

(1) By leveraging both knowledge bases and search
results, QDMKB breaks the limitation of only using
search results to generate query facets, thus could
improve the quality of facets, especially recall.
Although in practice, it is impossible and unneces-
sary to show hundreds of facet items to users, recall
is still of great importance. First, for some short fac-
ets such as “founders” of query “Google” and
“family members” of query “Tom Cruise,” users
want exactly total answers. Second, even for long
facets which cover dozens of items, users still may
have the potential to explore as many suggested
items as possible. Listing all these items aside the tra-
ditional “ten blue links” is distracting. Instead, we
could use a “more” link to guide the users who want
to explore more to another single page.

(2) Knowledge bases act not only as supplemental data
sources, but also bring structured information to
query facets. Different items among facets mined by
traditional methods are isolated and lean, while dur-
ing the process of our algorithm, we actually link
some facet items to knowledge bases, which could
yield many benefits such as (a) finding more infor-
mation related to each facet item through the link
structure of knowledge bases; (b) using the types or
properties in knowledge bases as a potential expla-
nation of the meaning of each facet.

We use two existing datasets that are used by QDMiner
[4], namely UserQ and RandQ, to evaluate the proposed
method. Experimental results show that our proposed
method QDMKB significantly outperforms all state-of-the-
art methods including QDMiner, QF-I, and QF-J in terms of
rp-nDCG. It yields significantly higher recall of facet items.

The remainder of this paper is organized as follows. We
introduce related works in Section 2. Our approach is intro-
duced in Section 3. Experimental methodology and results
are introduced in Sections 4 and 5. We conclude our work
in Section 6.

TABLE 1
Example Query Facets

query Pentax
1 k7, k200d, istd, kx, k100d, k10d, . . .
2 optioi 10, optio h90, optio rz10, optio rs1000, . . .
3 binoculars, spotting scopes, range finders, . . .
4 canon, casio, nikon, kodak, sony, olympus, . . .

query Beijing subway
1 line 1, line 2, line 4, line 5, line 10, line 13, batong line, . . .
2 xizhimen, jianguomen, dongzhimen, chongwenmen, . . .
3 forbidden city, temple of heaven, tiananmen square, . . .

query Tom Cruise
1 knight and day, top gun, valkyrie, mission impossible, . . .
2 katie holmes, nicole kidman, mimi rogers, suri cruise, . . .
3 actor, producer, director, writer
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2 RELATED WORK

2.1 Query Facet Mining and Faceted Search
Query facets summarize a query in different aspects. They
may help users quickly understand important aspects of the
query and help them explore information. Dou et al. first
introduced this problem and proposed QDMiner algorithm
[4]. QDMiner first extracts frequent lists in top search results
using predefined patterns, then weights each list and
groups them into final facets. Similar to QDMiner, Kong
and Allan [6] developed supervised approaches, namely
QF-I and QF-J, to mine query facets. Facet item candidates
are extracted from frequent lists which are obtained in a
similar way as QDMiner. Then two Bayesian models are
learned to estimate how likely a candidate is a facet item
and how likely two candidates belong to the same facet. All
the existing works are based on top search results, hence the
quality of final facets might be limited. If some words or
phrases don’t appear in a list within top search results, they
have no opportunity to be facet items.

Different from query facet mining that generates facets
for each query without any domain assumptions or prior
knowledge, some traditional faceted search approaches are
mainly built on a specific domain or predefined facet cate-
gories. The problem of automatically mining facet metadata
and mapping documents onto these categories has been
studied for years [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19]. A robust review of faceted search is beyond
the scope of this paper. Dakka et al. [12], [13], [14] devel-
oped methods to extract facet hierarchies for a text corpus
or a text database then assign each document to those facets.
One main difference is that we aim to mine several semanti-
cally coordinate lists of items to guide users’ search, while
Dakka’s methods focus on building concept hierarchies.
Stoica et al. [19] proposed Castanet to automatically gener-
ate domain-specific faceted metadata from textual descrip-
tions of items based on existing external lexical database
WordNet. Li et al. [11] proposed Facetedpedia base on the
internal link structure and categories of Wikipedia. Differ-
ent from the approaches above, query facet mining con-
structs specific facets for arbitrary query without
predefined domains or categories.

2.2 Set Expansion
The problem of facet expansion we discuss in this paper is
related to the problem of set expansion, which focuses on
expanding a partial set of “seed” objects into a more com-
plete set. The problem of set expansion has been well stud-
ied. The well-known examples of web-based set expansion
systems are Google Sets [20], Set Expander for Any Lan-
guage (SEAL) [21], [22], [23], [24], and NeedleSeek [25], [26].
The basic idea of SEAL is that different terms in the same
set should appear in similar context. SEAL first searches
semi-structure documents that contain all the seeds, then
constructs a wrapper for each document to extract more
terms with similar context. The final rank of all the candi-
dates is conducted by random walk in a graph.

Similar to set expansion, we also aim to find new items that
are similar to seed items to enrich the facet. However, the
notable difference between query facet expansion and set
expansion is that we have higher requirement on item accu-
racy for facet expansion. The expanded facet items should not
be just relevant to each seed item—they should also be rele-
vant to the query context, including query itself and its top

search results. Utilizing the contextwill helpmeasure the rele-
vance of discovered items and control the quality of the facet.
For example, a set including “Sam Smith,” “Pharrell
Williams,” and “Carrie Underwood” could be expanded to a
set of “pop stars” under no context, while given the query
“57th grammy,” it is more accurate to expand this set to a col-
lection of “57th grammy awardwinners.”

2.3 Query Recommendation
The problem of query ambiguity and broadness has been dis-
cussed for several years, and query recommendation (or
query suggestion) is a popular way to help users specify their
information needs and issue the correct query. Existing query
recommendation techniques are used to propose alternative
queries that are semantically similar to the user’s original
query [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37].
These suggested queries are provided to users and users can
select one of them which better describes their information
needs. The problem of mining facets is different from query
recommendation, as the main purpose of mining facets is to
summarize the information contained in the query, rather
than to find some query reformulations. There might be dif-
ferent applications of using query facets. For example, for the
query “Beijing Subway,” there exists a facet “line1,” “line2,”
“line4,” “line5,” etc. which includes transit lines that are direct
summarization of the query information rather than query
reformulations. It would be natural to use query facets as
structural query suggestions, andwewill investigate the solu-
tion to exploit query facets for generating query suggestions.

2.4 Query-Based Summarization
Text summarization technique is a fundamental research
area. Existing methods could be distinguished following
different criterias: summary construction methods (abstrac-
tive/extractive), number of sources for the summary (sin-
gle/multiple documents), summary trigger (generic/query-
based). Different approaches of query-based summarization
include graph-based, language model-based and machine
learning. The detailed illustration could be found in [38]
and [39]. Although both summarization and query facets
aim to conclude valuable information from retrieved docu-
ments, they vary in the way of presentation. Summarization
uses a flat list of sentences, while query facet mining digs
deeper to generate multiple lists of semantically related
terms. Organizing information as lists is a more intuitive
way to guide user’s browsing.

3 MINING QUERY FACETS

A query facet is comprised of homogeneous or coordinate
items which describes or summarizes an important aspect
of a query. A facet item is an information nugget which
could be represented in the form of words, phrases, or short
sentences. A single query may include multiple facets, as
shown in Table 1.

Existing approaches, such as QDMiner, QF-I, and QF-J,
mainly exploit frequent lists contained in top search results
for generating query facets. These lists are extracted by pre-
defined patterns described in Table 2. Using these patterns,
we could extract many coordinate items such as watch
brands in both Examples 1 and 2 shown below. In
QDMiner, the extracted lists are weighted by their frequen-
cies and are grouped together into query facets. In QF-I and
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QF-J, the items contained in extracted lists make up the can-
didate set. Two Bayesian models are trained to predict
whether a candidate is a facet item and whether two candi-
dates belong to the same facet.

Example 1. We shop for gorgeous watches from Seiko,
Bulova, Lucien Piccard, Citizen, Cartier or Invicta.

Example 2. <ul><li><a � � �>Omega SA</a></li>
<li><a � � �>Jaeger-LeCoultre</a></li>
<li><a � � �>Rolex</a></li>� � �</ul>

All existing approaches heavily rely on top search results
which is defective. We propose mining query facets based
on both knowledge bases and search results, because:

(1) There are some important items in the top retrieved
documents, but they are not represented in a list. For
example, the following paragraph is in the top
retrieved documents of the query “best restaurants
in Boston”.

Example 3. I lived in Boston when I was a child. My father
always took me to Mistral restaurants at that time, and I
thought it was the best restaurants in Boston. After I
grow up, my girlfriend likes to eat at No.9 Park. I promise
that’s the best restaurants I have ever seen. . .

In this example, there are two restaurant names “Mistral
restaurants” and “No.9 Park” which are good facet item
candidates for the query. However, it is unable to extract
them by the patterns used in existing works, because they
are not represented in a list.

(2) Sometimes some items are not even in top search
results, so we have no opportunity to extract them.

(3) We suggest that knowledge bases (like Wikipedia or
Freebase) are very good data sources for generating
query facets. Knowledge bases contain high-quality
structured information. By leveraging a knowledge
base, we may have the opportunity to extract both
“Mistral restaurants” and “No.9 Park” as instances
of hotel for Example 3.

(4) The sole use of knowledge bases is not enough andwe
still need to leverage search results. The quality of
information contained in a knowledge base is gener-
ally high, whereas using search results has other bene-
fits. First, search results may contain fresh facet items
which are not included in a knowledge base, especially
the latest information. For example, search results for
the query “Apple” may include information about
“iPhone 6” earlier than a knowledge base. Second,
search results help identify the importance of entities.
For instance, in Freebase, both Apple and Samsung
belong to the type Mobile Brands. No information is

provided about which brand is more popular whereas
using search results of the query “mobile brands,” we
can at least know which brand is mentioned more fre-
quently. Third, it is not easy to directly generate facets
based on a knowledge base for queries which are not
entities. We need search results to generate initial fac-
ets for this kind of queries.

In the remaining part of this section, we will introduce
QDMKB in detail.

3.1 Overall Solution
In this paper, we use Freebase for mining query facets. Free-
base is a large knowledge base consisting of data harvested
from sources such as Wikipedia, NNDB, FMD, and Musi-
cBrainz, as well as individually contributed data from users.
Freebase provides a JSON-based HTTP API2 to pro-
grammers, and we can use Metaweb Query Language
(MQL) to customize a query to retrieve data. In this paper,
we use Search API and Topic API to retrieve entities, prop-
erties, and types. All entities, properties and types in Free-
base are presented in italics in this paper.

The overall solution, namely QDMKB, is shown in Fig. 1.
We use both facet generation and facet expansion to con-
struct facet candidates. These candidates are further merged
and ranked to generate final facets. Given a query q issued
to QDMKB, the algorithm has four major steps:

(1) Facet Generation

� Retrieve relevant entities. Based on Freebase Search API,
we retrieve a list of entitiesEðqÞ relevant to query q

� Retrieve related properties. Based on Freebase Topic
API, for each entity e 2 EðqÞ, we retrieve all its direct
properties P1ðeÞ and further construct its second-hop
properties P2ðeÞ. P ðeÞ ¼ P1ðeÞ [ P2ðeÞ and P ðqÞ ¼S

e2EðqÞP ðeÞ. We remove properties in P ðqÞ which

have only one target entity and the left ones are facet
candidates.

(2) Facet Expansion
We first use existing state-of-art algorithm QDMiner to

generate a set of initial facets F ðqÞ. For each facet f 2 F ðqÞ,
we use the following steps:

� Property based facet expansion.We try to assign f to the
most appropriate property p 2 P ðqÞ and use other
entities in p to enrich f . The property p should cover
most items in f , meanwhile its size should be as
small as possible to avoid including unrelated items.

� Type based facet expansion. If P ðqÞ is empty or no suit-
able p is found in P ðqÞ, we try to assign f to the most
fine-grained type t which covers most items in f and
use other entities in t to enrich f . Because Freebase
types are usually too broad, we further construct some
constraints to narrow down the semantic scope just
like the example in Section 1. The constraints precisely
characterize the relationship between facet and query
context and thus improve the accuracy of expansion.

(3) Facet Grouping
All the facet candidates constructed by facet generation

and expansion might have duplicate entities. We use the

TABLE 2
Text Patterns for Extracting Lists

Pattern type Examples

free text item{, item}* (andjor) {other} item
HTML <select><option>item</option>� � �</select>

<ul><li>item</li>� � �</ul>
<table><tr><td>item</td></tr>� � �</table>

2. https://developers.google.com/freebase/
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Quality Threshold algorithm to cluster them into the final
facets by grouping similar candidates together.

(4) Facet Weighting
We weight each final facet in the same way as QDMiner.

A good facet should be supported by many websites and
contain informative items. These final facets are sorted by
weights to form the output of QDMKB.

By utilizing the high-quality information of knowledge
bases and user intent reflected in search results, QDMKB

has potential to outperform existing algorithms that are
solely based on top search results. In the remaining parts of
this section, we will introduce each component in detail.

3.2 Facet Generation
Given a query q issued to QDMKB, we try to find relevant
entities in Freebase and construct properties of these enti-
ties. These properties are inherent summarizations of corre-
sponding entity in different aspects thus can be used
directly as facet candidates. If the query matches no entities
in Freebase, no candidates will be generated in this step. We
will use Freebase Search API to retrieve relevant entities
and use Topic API to retrieve properties.

3.2.1 Retrieving Relevant Entities

We use Freebase Search API3 to retrieve entities for an input
query string. Based on the introduction to the Search API,
retrieved Freebase entities are ranked by a relevance score
that is a function of its inbound and outbound link counts in
Freebase andWikipedia. We assume that the ranking quality
is reasonably good, and we can retrieve relevant entities in
top search results for most queries. However, Freebase also
returns partially relevant entities. For example, for the input
query “windows,” Freebase returns highly relevant entities
like Microsoft Windows and Windows 7, meanwhile it also
returns partially relevant entities like .NET Framework and
Visual Basic at lower positions. In this paper, we just want
exactly matched entities in most cases. To select this kind of
entity results, we use the following method to further select
entities from the results returned by Freebase:

(1) Retrieve top five entities from Freebase. We retrieve
only top five entities for each query, because our ini-
tial study shows that Freebase can return correct
entities within top five results for most queries.

(2) Calculate similarity between each entity and the
input query string. Because an entity may be pre-
sented in different ways, we use all aliases of the
entity together with its name. In Freebase, there
might be multiple aliases for an entity. For example,
the entity Microsoft Corporation has aliases like
“microsoft,” “ms,” and “msft”. The similarity
between an input query string qs and an entity e is
calculated as follows:

Simðe; qsÞ ¼ max
a2aliasðeÞ

ja \ qsj
ja [ qsj: (1)

Here aliasðeÞ is all the aliases of an entity e, ja \ qsj
is the number of common terms shared by a and qs,
and ja [ qsj is the number of terms that either
appears in a or in qs.

(3) Remove the entities if Simðe; qsÞ < tsim, where tsim is
a threshold for controlling similarity.

(4) The remaining list of entities, represented by EðqsÞ,
are assumed to be the retrieved entities for string qs.

We directly use query q issued to QDMKB as the input
string to Search API and follow the steps above to obtain rel-
evant entities set EðqÞ. Because a query may have various
meanings, it is reasonable to keep multiple entities instead
of just the top one.

3.2.2 Retrieving Related Properties

For each entity e 2 EðqÞ, we use Freebase Topic API4 to
retrieve direct properties associated with their target entities
P1ðeÞ and further obtain second-hop properties P2ðeÞ.

Each Freebase entity belongs to different types, and each
type contains different properties. For example, entity
Steven Spielberg belongs to types Film Producer (/film/pro-
ducer), Film Director (/film/director), TV Producer (/tv/tv_pro-
ducer), and etc. Type Film Director includes properties such
as Films Directed (/film/director/film) which has targets enti-
ties like Schindler’s List, Saving Private Ryan, and War Horse.
Type TV Producer contains properties such as TV Programs
Produced (/tv/tv_producer/programs_produced) which includes
target entities like Animaniacs, Band of Brothers, and Halo.
We call these properties and their target entities as direct
propertieswhich could be retrieved by Topic API.

Fig. 1. Overall solution ofQDMKB.

3. https://developers.google.com/freebase/v1/search-cookbook 4. https://developers.google.com/freebase/v1/topic-overview
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In addition to direct properties, we further obtain
“properties of properties” just like the example of Beijing
Subway showed in Section 1. For Steven Spielberg, we can fur-
ther retrieve properties for each of his directed films. All
these films have a property Actors (/film/film/starring). Then
All Actors of Directed Films is a second-hop properties of Steven
Spielberg. We can iteratively continue this process to gener-
ate multi-hop properties. The more hops we use, the more
related entities we find, but the less relevant the retrieved
entities are. All the retrieved properties and target entities
compose a radial graph that centers on the source entity
which, in the case above, is Steven Spielberg. Considering the
trade-off between recall and precision, we only use the
direct and second-hop properties in this paper. We leave
the exploration of using more hops to future work.

Assume that p is a direct property of entity e, V ðe; pÞ is all
the target entities the property contains for entity e, P1ðeÞ is
a set of triples with the form of <e, p, V ðe; pÞ>. Let

et 2 V ðe; pÞ is one of the target entities and p
0
is a direct

property of et. We use the following method to construct
second-hop properties P2ðeÞ for entity e.

Sometimes the same direct property of peer target enti-
ties may include duplicate entities. For example, Saving Pri-
vate Ryan and War Horse are two target entities belonging to
the property Films Directed of entity Steven Spielberg. Prop-
erty Genres (/film/film/genre) of Saving Private Ryan has target
entities including War Film, Action Film, and Drama,
whereas the corresponding property of War Horse includes
War Film and Drama. In this case, we tend to merge all Gen-
res of different films to form one second-hop property, i.e.,
All Genres of Directed Films of Steven Spielberg. That is to say,
if properties p

0
of each entity et in V ðe; pÞ share many com-

mon target entities, we tend to treat all these p
0
as a whole.

From the viewpoint of source entity Steven Spielberg, the
property All Genres of Directed Films makes more sense than
many separate properties such as Genres of His Saving Pri-
vate Ryan and Genres of His War Horse. In contrary, if proper-

ties p
0
vary from each other, such as Actors of different films

directed by Steven Spielberg, each of them will be treated as a

separate second-hop property. We use <e, p ! p
0
,

[et2V ðe;pÞV ðet; p0 Þ> to denote merged second-hop properties.

Separate second-hop property is denoted by <e, p !et p
0
,

V ðet; p0 Þ> where p !et p
0
indicates that this property is asso-

ciated with the entity et 2 V ðe; pÞ. We calculate a diversity
score for each second-hop property as follows:

Diversityðe; p; p0 Þ ¼ j S et2V ðe;pÞV ðet; p0 ÞjP
et2V ðe;pÞ jV ðet; p0 Þj : (2)

We create separate second-hop properties p !et p
0

if

Diversityðe; p; p0 Þ is larger than 0.5whichmeans that if on aver-

age each target entity occurs less than twice among p
0
of every

et 2 V ðe; pÞ, separate second-hop properties are constructed;

otherwise, we create a merged one p ! p
0
which contains all

unique target entities from p
0
of every et 2 V ðe; pÞ. All merged

and separate second-hop propertiesmake up set P2ðeÞ.
For each e 2 EðqÞ, we obtain both P1ðeÞ and P2ðeÞ, P ðeÞ ¼

P1ðeÞ [ P2ðeÞ, P ðqÞ ¼ S
e2EðqÞP ðeÞ. We remove all the triples

in P ðqÞ whose jV ðe; pÞj <¼ 1 which means that the prop-
erty has no more than single value. Examples of single-
value properties for entity Steven Spielberg include

Nationality (/people/person/nationality) and Gender (/people/per-
son/gender). We remove all single-value properties because
they don’t have enough entities to form a facet. All left
properties are facet candidates.

3.3 Facet Expansion
Given a query q and its top search results DðqÞ, assume F ðqÞ
are initial query facets extracted by QDMiner. Recall that
QDMiner is a system that can automatically mine query fac-
ets by extracting and clustering frequent lists from top
search results. As introduced in Section 1, QDMiner may
suffer from the limitation of the search results. We propose
further expanding the facets to find more peer items by
leveraging a knowledge base.

Assuming that f 2 F ðqÞ is an initial facet generated by
QDMiner. We propose two different ways to expand f
based on Freebase, namely property based and type based facet
expansion, as introduced in Section 3.1.

3.3.1 Facet Expansion Based on Properties

Using the method introduced in Sections 3.2.1 and 3.2.2, we
obtain all properties P ðqÞ for query q. Note that these prop-
erties include the direct properties, the merged second-hop
properties, and the separate second-hop properties. For
each initial facet f 2 F ðqÞ, we try to find the most suitable
property p 2 P ðqÞ that can cover most items in f .

For each entity e 2 EðqÞ, we use the following equation to
calculate the ranking score of each property p 2 P ðeÞ

scoreðe; f; pÞ ¼ idfðpÞ � simðe; f; pÞ: (3)

Where idfðpÞ is the inverted entity frequency for the

property. We have idfðpÞ ¼ log jEj
jV ðe;pÞj where jEj is the total

number of entities contained in Freebase. jV ðe; pÞj is the
number of target entities of property p. We assume that if
property p has a large number of target entities, then p tends
to be a common property. A common property is less distin-
guishable and useless to be a facet candidate. simðe; f; pÞ is
the similarity between the facet and the property

simðe; f; pÞ ¼
P

Ii2f IðjEðIiÞ \ V ðe; pÞj > 0Þ
jf j : (4)

We use the same method introduced in Section 3.2.1 to
retrieve entities for each facet item. jf j is the number of
items contained in the initial facet. For each Ii 2 f , if EðIiÞ
has overlap with V ðe; pÞ, IðjEðIiÞ \ V ðe; pÞj > 0Þ is 1. The
numerator is the count of facet items which could be found
in property p. We remove the properties with simðe; f; pÞ <
toverlap, then rank all left properties base on Equation (3) and
select the top 1 as final property assignment result.

Table 3 shows a list of property candidates ranked by
scoreðe; f; pÞ. The first initial facet includes all the operating
systems under query “windows”. According to scoreðe; f; pÞ,
the most probable underlying property is a second-hop prop-
erty of entity Windows which includes all the operating sys-
tems developed byMicrosoft. It extends raw facet size from 32
to 50. The property in second position is Softwares ofMicrosoft
which is too broad and thus has a lower idfðpÞ. The third
property is a direct property Versions Included of Windows
which doesn’t cover most items in initial facet. The second
example shows an initial facet of Beijing tourist attractions
and the best matching property we select is also a second-hop
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property ofBeijing Subwaywhich is exactlywhatwewant. The
property characterizes the relationship between queries and
facets, so that it could be used as a potential label of the facet
which helps user understand the underlyingmeaning.

3.3.2 Facet Expansion Based on Types

If P ðqÞ is empty or no suitable property is found, the method
introduced in Section 3.3.1 fails. In this section, we propose
directly finding similar items for a facet without the premise
that query matches entities in Freebase. More specifically, we
try to find a formalized query that can be used to retrieve simi-
lar entities. First, we select the most possible type for the facet;
second, we discover some constraints that can narrow the
scope; finally, we combine the type and constraints to make
up a singleMQL query to retrievemore candidates from Free-
base. For example, assume that the initial facet is “E.T.,”
“Saving Private Ryan,” etc. for query “Spielberg’s movies”.
By checking the common types shared by these movies, we
may select Film (/film/film) as the main type. This type almost
covers all facet items, but it is too broad and contains many
irrelevant films of which the director is not Spielberg. If we
figure out that all items in the initial facet are directed by Spiel-
berg, we can use (Spielberg 2 Directors) as a constraint to nar-
row down the search scope which means that the retrieved
entities must have the property Directors and Spielberg must
appear in the target values of this property. Thismight signifi-
cantly improve precision of expanded facet items, as well as
system efficiency becausemuch less entities are retrieved.

(1) Type Weighting
Recall that Ii 2 f is a facet items in facet f , and EðIiÞ is

the corresponding entities retrieved from Freebase, and
e 2 EðIiÞ is one of these entities. Assume that T ðeÞ is the list
of types of entity e. We use the following equation to calcu-
late the weight of a type t for facet f

scoreðf; tÞ ¼ idfðtÞ � weightðf; tÞ (5)

weightðf; tÞ ¼ 1

jfj
X
Ii2f

X
e2EðIiÞ

X
te2T ðeÞ

Iðt; teÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðIi; eÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðf; IiÞ

pq : (6)

Where Iðt; teÞ ¼ 1 if t equals to te, i.e., e belongs to type t.
RðIi; eÞ denotes the rank of entity ewithin the retrieved enti-
ties for facet item Ii. Rðf; IiÞ is the rank of facet item Ii
within the initial facet. The higher a facet item and an entity
are ranked, the higher the weights of corresponding types
of the entity are.

Similar to idfðpÞ, idfðtÞ is the inverted entity frequency of

type t. We have idfðtÞ ¼ log jEj
jEtj where jEtj is the number of

entities belonging to type t.
We remove all the types whose weightðf; tÞ < toverlap,

then rank left ones based on Equation (5), and select the top
1. If no types are left, we directly output the initial facet.

Fig. 2 shows the types of entities in Freebase. Most types
are too broad. The most fine-grained type of Schindler’s List
is Biographical Film which fails to capture the relationship
between facets and the query “Steven Spielberg,”

(2) Query Dependent Constraint
As we mentioned before, if we directly retrieve all the enti-

ties of the selected type (for example, all films), theremight be a
large number of entities irrelevant to the query context, which
is also the biggest difference between set expansion and query
facet expansion. To utilize query context, we need to generate a
more specific query to narrow down the scope of entities. We
try to generate a MQL query for retrieving entities which
belong to the selected type and have some common properties
with the same target entities. For example, for a facet comprised
of “Saving Private Ryan,” “E.T.,” etc., we try to generate aMQL
query like:

[{

’’/film/film/director’’: [{

’’mid’’: ’’/m/06pj8’’ //Steven Spielberg

}]

’’type’’: ’’/film/film’’,

}]

For each facet item Ii 2 f , we retrieve all its properties
P1ðIiÞ from Freebase using the method introduced in Section
3.2.2. The reason why we don’t use P2ðIiÞ is that initial facets

TABLE 3
Property Based Facet Expansion

query:windows
facet: windows vista, windows xp, windows 7, windows 2000, windows nt 3.1, windows 95, windows 98, windows server 2008, . . . (32 total)

<Windows, /developer
Microsoft�������! /operating_systems_developed, [MS-DOS, Windows 98, Windows XP, Windows 7, Windows Server, . . . (50 total)]>

<Windows, /developer
Microsoft�������! /software, [Outlook, Office, PowerPoint, SharePoint, WordPad, Visual C++, IE, Window 7, . . . (329 total)]>

<Windows, /includes_os_versions, [Windows 1.0, Windows 2.0, Windows NT, Windows XP, Windows Vista, Windows 7, . . . (11 total)]>

query: beijing subway
facet: forbidden city, temple of heaven, tiananmen square, summer palace, the forbidden city, the great wall, lama temple, . . . (8 total)

<Beijing Subway, /area_served
Beijing�����! /tourist_attractions, [Forbidden City, Summer Palace, Ming tombs, Beihai Park, Tiananmen Square, . . . (33 total)]>

<Beijing Subway, /area_served
Beijing�����! /location, [Beijing National Stadium, Peking University, Tanzhe Temple, Wangfujing, . . . (309 total)]>

query:michael jackson
facet: you rock my world, butterflies, man in the mirror, thriller, cry (5 total)

<Michael Jackson, /nominated_work, [Beat It, Billie Jean, We Are the World, Bad, Man In the Mirror, Earth Song, Dangerous, . . . (168 total)]>

<Michael Jackson, /track_contributions [Who Is It, I Can’t Help It, Off the Wall, Will You Be There, Cry, In the Closet, . . . (151 total)]>

<Michael Jackson, /tracks_produced, [Billie Jean, Get on the Floor, Bad, Heaven Can Wait, Black or White, Muscles, Threatened, . . . (113 total)]>

All properties are in the form of triple <source entity, property, target entities> and ranked by their scores.
Note that property could be direct or second-hop. Each second-hop property has an arrow.
The first property of “windows” means thatWindows has a property Developer with a valueMicrosoft.Microsoft has a propertyDeveloped OS.
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usually have many items, and it is costly to further construct
second-hop properties for each item. We then transform all
the properties and their values into a list of pairs <p, et>
which are comprised of a property p, and a target entity et.
For example, the property Directed By (/film/film/directed_by)
of entity Saving Private Ryan is transformed to pair </film/
film/directed_by, Steven Spielberg>. Similarly, E.T. has the
same pair </film/film/directed_by, Steven Spielberg> as
Saving Private Ryan. For each facet item Ii 2 f , we obtain a set
of pairs. We then check each pair, and select the ones whose
target entity et is related to the query q.We assume that entity
et is related to the query q if et has at least one alias that is con-
tained by the query, i.e., 9a 2 aliasðetÞ, a \ q ¼ a. By confin-
ing the target entity of the pair to be related to query, we
characterize the relationship between the facet and the query
and thus guarantee expansion precision.

We then calculate the weight of each pair using the fol-
lowing equation. If a pair is included by many facet items
just like the example above, it has a high weight

weightðf; p; etÞ ¼ 1

jf j
X
Ii2f

X
e2EðIiÞ

HasPairðe; p; etÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðIi; eÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðf; IiÞ

p : (7)

HasPairðe; p; etÞ ¼ 1 if entity e has a property p contain-
ing a target entity et; otherwise,HasPairðe; p; etÞ ¼ 0.

We remove pairs whose weightðf; p; etÞ < toverlap. For
each et among left pairs, we select the top 1 (p, et) pair to
generate query constraints in the final MQL query (the final
MQL may contain multiple pair constraints). If no candidate
pairs are left, we assume that there is no consistent

constraint for this type and in this case, we use all the enti-
ties of the type for facet expansion.

An alternative for constructing constraints is to use tradi-
tional relation extraction methods. For example, the sim-
plest way is to identify entity Spielberg and his movies in the
text and extract their underlying relation “director of” by
some predefined patterns. To retrieve more similar entities
from Freebase, we need to use structured query language
(such as MQL). Although the relationship extracted may be
reasonable, how to translate or map the textual form rela-
tion to structured query remains a problem. How to employ
relation extraction methods is our future work.

Table 4 shows three examples of type based facet expan-
sion. The first one is a facet of characters of TV program Gen-
eral Hospital. The best matching type TV Character is too broad
to be a query facet. By utilizing the property constraint, the
characters are required to appear in programGeneral Hospital,
which is more specific and precise. The second case is a facet
consisting of actors in film Eclipse. Type Celebrity is too crude
to characterize the relationship while the property constraint
does. Note that our method accommodates the situation
where initial facets contain noises such as “new moon”
because the foundation of our approach is voting. The last
example uses three property constraints to describe the rela-
tionship between the query “chinese women tennis player”
and the facet, and achieves an exact comprehension of the
rawquery.

A problem worth consideration is the ambiguity problem.
The entities we retrieve for each facet item may not corre-
spond to the genuine meaning. Regarding a facet which is
comprised of “Apple,” “Samsung,” “Nokia,” “Blackberry,”

Fig. 2. Freebase entities and types corresponding to items of facet “directed films” of query “Spielberg,” “E.T.” matches two entities, a film (/m/0jqn5)
and a composition (/m/0g55c60). The music’s types include Composition, Cataloged instance, etc.

TABLE 4
Type Based Facet Expansion

query: general hospital recaps
facet: sonny corinthos, jason morgan, lucky spencer, luke spencer, dante falconeri, nikolas cassadine, . . .

type /tv/tv_character
constraints </appeared_in_tv_program, General Hospital>

query: eclipse
facet: kristen stewart, robert pattinson, twilight, taylor lautner, breaking dawn, new moon, ashley greene, . . .

type /celebrities/celebrity
constraints </performance_in, Eclipse>

query: chinese women tennis players
facet: zheng jie, peng shuai, li na

type /tennis/tennis_tournament_champion
constraints </nationality, China>, </gender, Female>, </profession, Tennis player>

For the first example, retrieved entities must belong to type TV character and appear in General Hospital.
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“LG,” etc., for the item “Apple”, we may retrieve the entity
Apple (fruit). However, by using voting based scores, the ambi-
guity problem is addressed potentially. Assume that only a
small portion of items have ambiguousmeanings, the effect of
ambiguity could be solved because the voices of ambiguity
entities are too weak to make a difference. In the example
above, although “Apple” has an ambiguous meaning Apple
(fruit) whose type is Fruit (/user/rcheramy/default_domain/fruit),
all the other items tell that the facet is about Mobile Phone
Brands (/user/robert/mobile_phones/mobile_phone_brand).

3.4 Facet Grouping
After facet generation and expansion, we collect a set of facet
candidates which consist of (1) new facet candidates gener-
ated from Freebase; (2) facet candidates expanded by the
property based and type based methods. There might be
duplicate items within these facet candidates, hence we need
to further group these facets.We use theQT algorithm (Qual-
ity Threshold) to cluster facet candidates [40]. QT is a cluster-
ing algorithm that groups data into high quality clusters.
Compared to other clustering algorithms, QT ensures quality
by finding large clusters whose diameters don’t exceed a
user-defined diameter threshold. This method prevents dis-
similar data from being forced under the same cluster and
ensures good quality of clusters. In QT, the number of clus-
ters is not required to be specified. We use the complete link-
age for calculating the diameter, i.e., diameter is calculated
using the longest distance among all the points in the cluster

DiaðCÞ ¼ max
f12C;f22C

Disðf1; f2Þ: (8)

And the distance Disðf1; f2Þ between facet f1 and facet f2
is calculated as follows:

Disðf1; f2Þ ¼ jf1 \ f2j
maxjf1j; jf2j : (9)

3.5 Facet Weighting
For each final facet f , we calculate a weight to evaluate its
importance. Consistent with QDMiner, we assume that a
good facet is usually supported by many websites and
appear in many documents. A good facet contains items
that are informative to the query. Therefore, we evaluate the
importance of each facet f by the following components:

(1) SDOC: result matching weight. Good facet item should
frequently occur in highly ranked results. We let

SDOC ¼ P
d2R smd � srd

� �
, where smd � srd is the support-

ing score by each result d, and:
� smd is the percentage of items contained in d. A facet f

is supported by a document d, if d contains some
facet items of f . The more items d contains, the
stronger it supports f . Suppose Nf;d is the num-
ber of items which appear both in list f and doc-
ument d, and jf j is the number of facet items

contained in facet f , we let smd ¼ Nf;d

jf j .
� srd measures the importance of document d. The docu-

ments ranked higher in the original search results
are usually more relevant to the query, hence they

are more important.We simply let srd ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
rankd

p
,

where rankd is the rank of document d. The higher
d is ranked, the larger its score srd is.

(2) SIDF: average invert document frequency (IDF) of items. A
list comprised of common items in a corpus is not infor-
mative to the query.We calculate the average IDF value

of all items, i.e., SIDF ¼ 1
jfj �

P
e2f idfe. Here idfe ¼

log N�Neþ0:5
Neþ0:5 , where Ne is the total number of docu-

ments that contain item e in the corpus andN is the total
number of documents. We use the ClueWeb09 collec-
tion,5 which includes about one billion webpages, as
our reference corpus in countingNe andN .

We combine the components above, and evaluate the
importance of a facet f by

Sf ¼ SDOC � SIDF: (10)

Finally, we sort all final facets by weights to form output
of QDMKB. The reason why we use search results instead of
knowledge bases to weight and rank each facet is that
search results reflect users’ attention and intent. We don’t
have much information about the popularity of entities in
the current Freebase. Recall the example used in Section 3.
If a user searches “mobile phone”, both Apple and Samsung
are facet item candidates which, in Freebase, are just two
distinct nodes with similar properties and types. While by
search results, we could confirm which one appears more
frequently to justify its importance.

4 EXPERIMENTAL SETUP

4.1 Datasets
We use the same datasets as QDMiner to evaluate our
approach. The first dataset, namely, UserQ, is comprised of
89 queries issued by QDMiner users. The second dataset is
RandQ which includes 105 randomly sampled English
queries from a query log of a commercial search engine.

We construct the ground truth as follows. For each query in
both dataset, ground truth facets are manually created by
annotatorswho need to do careful survey on the topics related
to the query. Then, each facet is rated by at least five subjects in
three levels, namely Good, Fair, and Bad. Based on our inves-
tigation, the facets created by human annotations can cover
most useful facets returned by different algorithms. In fact,
the ground truth used in this paper is built based the on one
used in [4]. Because we introduce more baselinemethods and
propose QDMKB, some unlabeled items emerge. After adding
these unlabeled items to ground truth, the newly constructed
ground truth can be viewed as a superset of the old one,which
causes the difference of experiment result of QDMiner (rp-
nDCG decrease from 0.212 to 0.183 as shown in Table 6). Note
that all the annotations are made according to SERP of each
facet item returned by search engine rather than knowledge
bases, so there is no association between the construction of
ground truth and experimental performance.

On average, each query in UserQ has 4.9 Good, 5.3 Fair,
4.4 Bad facets, while each query in RandQ has 2.9 Good, 2.1
Fair, 2.1 Bad facets. The reason why queries in UserQ have
more facets is that queries in RandQ are sampled from logs
of a commercial search engine which have many meaning-
less queries. In experiment section, we split each dataset
into two parts, namely direct-entity and general queries.
Direct queries are the queries matching entities in Freebase,
i.e., jEðqÞj > 0. General queries are the left ones, i.e.,

5. http://boston.lti.cs.cmu.edu/Data/clueweb09/
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jEðqÞj ¼ 0. The detailed statistics of the datasets are dis-
played in Table 5. The datasets were published at http://
www.playbigdata.com/qd2/datasets.aspx. More informa-
tion regarding the datasets can be found in [4].

4.2 Evaluation Metrics
Similar to QDMiner [4], we follow two aspects to evaluate
query facets, namely quality of clustering and ranking effec-
tiveness. For clustering quality, we use existing metrics
such as NMI. For ranking effectiveness, we use nDCG and
some tuned editions of nDCG to take precision and recall
into consideration. To evaluate ranking effectiveness, each
facet f is assigned a relevance score by aligning this facet to

a ground truth facet f
0
which covers maximum number of

items in f . Because a ground truth facet may be assigned to
multiple facets, the nDCG (including fp-nDCG and rp-
nDCG) scores may exceed 1. So we follow [4] to credit only
the highest assigned facet, and skip all later ones. The met-
rics are listed as follows.

NMI—Normalized Mutual Information. We use this metric
to evaluate whether facet items are split into correct facets.

nDCG—Normalized Discounted Cumulative Gain. nDCG
measure is widely used in information retrieval. This
measure is appropriate to evaluate the ranking of query
facets.

fp-nDCG—purity aware nDCG based on the first appearance
of each class. Suppose that each output facet fi is assigned to

a labeled class f
0
i. Then the ranking quality of top p facets is

calculated by nDCGp ¼ DCGp

IDCGp, where DCGp ¼
Pp

i¼1ðwi�
DGiÞ, wi ¼ f

0
i

T
fi

fi
, and IDCGp is the ideal ordering score.

DGi is the discounted gain of the ith facet, and

DGi ¼ 2ri�1

log2ð1þiÞ, where ri is f
0
i ’s ranking score.

rp-nDCG—recall and purity aware nDCG. rp-nDCG is cal-
culated based on all output facets, and we let

wi ¼ f
0
i

T
fi

fi

f
0
i

T
fi

f
0
i

for rp-nDCG.

F1-nDCG—F1 aware nDCG. F1-nDCG is similar with rp-

nDCG, except that wi ¼ 2piri
piþri

, pi ¼ f
0
i

T
fi

fi
, ri ¼ f

0
i

T
fi

f
0
i

.

We further use the evaluation metrics PRF and wPRF
proposed by Kong and Allan [6]. PRF is a harmonic mean of

precision of facet terms, recall of facet terms and facet clus-
tering F1. wPRF further takes into account the different rat-
ings associated with query facets, and it uses weighted facet
term precision, recall, and clustering F1. Note that neither
PRF nor wPRF accounts for facet ranking effectiveness.

We calculate the evaluation metrics above based on the
top 5 facets for each query and use two-tailed paired t-test
for statistically significance testing with p-value lower than
0.01. In all the following experiment result tables, signifi-
cance test results compared to different baselines are
marked using various symbols.

4.3 Experimental Settings
We implement several existing approaches to verify
whether QDMKB could outperform the state-of-the-art
algorithms. We implement QDMiner [4], the first query
facet mining algorithm, and the supervised method QF-I
and QF-J proposed by Kong and Allan [6]. As the prob-
lem of facet expansion is related to the problem of set
expansion, we also experiment with expanding facets
using SEAL which is one of the state-of-the-art set expan-
sion methods.

For QDMiner, we mine query facets based on top 100
results from a commercial search engine, which is consistent
with [4]. For QF-I and QF-J, we use the same lists extracted
from search results as QDMiner for fair comparison. We use
the same features, standardization method, and stratifica-
tion method, as those in [6]. For QDMiner, QF-I, and our
proposed method QDMKB, we use five-fold cross valida-
tions and tune corresponding parameters based on rp-
nDCG. We use rp-nDCG as the main metric because it con-
siders every aspect including ranking quality, clustering
quality, and item recall of generated facets. For QDMKB, we
tune toverlap used in Section 3.3. Based on our observation,
we empirically set tsim ¼ 0:3 used in Section 3.2.1 which
could filter apparently not exactly matched entities. For
QDMiner, we tune the clustering parameters—the diameter
threshold for a cluster and the weight threshold for a valid
cluster. For QF-I, we tune the weight threshold for facet
terms and the diameter threshold for clustering. For QF-J,
there are no parameters that need to be tuned.

5 EXPERIMENTAL RESULTS

5.1 Overall Results
We show the overall results of our proposed method and
baselines onUserQ andRandQ in Tables 6 and 7 respectively.

(1) QDMKB significantly outperforms all baselines in terms
of rp-nDCG and F1-nDCG, on both UserQ and RandQ.
For UserQ, rp-nDCG is improved to 0.239 which sur-
passes strongest baseline QDMiner’s 0.183 by about

TABLE 6
Overall Results on UserQ

Metric NMI F1 Pre Rec nDCG fp-nDCG rp-nDCG F1-nDCG PRF wPRF

QDMKB .841y� .339
$ z
� .711yz� .236

$

z .807yz .613yz� .239
$ y
z� .438

$ y
z� .410

$ z
� .428

$ z
�

QDMiner
$

.820 .270 .796 .169 .821 .620 .183 .402 .333 .349
QF-Iy .736 .350 .514 .284 .589 .334 .136 .317 .403 .431
QF-Jz .821 .253 .506 .179 .533 .383 .119 .243 .315 .336
SEAL� .754 .270 .265 .334 .793 .328 .126 .379 .324 .376

The best result is in bold. Pre is precision. Rec is recall.

TABLE 5
Statistics of Datasets

Item UserQ RandQ Item UserQ RandQ

#queries 89 105 #docs per query 99.8 99.5
#direct-entity queries 47 55 #lists per doc 44.1 37.0
#general queries 42 50 #items per list 9.7 10.1
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30 percent. P value of t-test is 6.249E-5, t value is
4.205, the degree of freedom df is 88. F1-nDCG is
improved to 0.438 from 0.402 by about 9 percent,
which is also a significant improvemet. For RandQ,
QDMKB raises rp-nDCG to 0.285 compared to
QDMiner’s 0.234 which is a huge promotion. P value
of t-test is 6.981E-7, t value is 5.285, the degree of
freedom df is 104. F1-nDCG is improved to 0.502
from 0.463 by about 8 percent, which is significant.
This means that the overall quality of facets mined
by our algorithm is higher than those mined by
QDMiner, QF-I and QF-J. This confirms the effective-
ness of leveraging knowledge bases for mining
query facets. The high-quality information contained
in knowledge bases is helpful for generating better
query facets. The average size of query facets in
QDMiner is 26.4. QDMKB improves it to 36.1.

(2) QDMKB gets comparable results with QDMiner in
terms of fp-nDCG. There is a slight drop from 0.62 to
0.613 on UserQ and from 0.611 to 0.604 on RandQ. It
should be emphasized that there is a trade-off between
precision and recall. The more entities we expand, the
more risk including unrelated items, which harms fp-
nDCG. In the first example of Table 8, QDMKB cor-
rectly uses type-based expansion to add more mobile
phone brands to the initial facet, which improves facet
recall as well as precision because the initial facet con-
tains a noise “iphone.” While in the second example,
QDMKB mistakenly aligns the initial facet which indi-
cates components of mobile phone to a meaningless
property. Although slightly inferior to QDMiner, our
method significantly outperforms other baselines on
fp-nDCG. This means that the ranking and clustering
quality are as good as original methods. Recall is
improvedwithout significant loss of precision.We fur-
ther calculate precision, recall, and F1 on facet item

level (different from [4], [7] where F1 indicates cluster-
ing F1). Specifically, on UserQ, precision drops from
0.796 to 0.711 by about 11 percent, while recall
increases from 0.169 to 0.236 by about 40 percent; on
RandQ, QDMKB gets comparable precision and signif-
icantly higher recall than QDMiner. QDMKB gets
worse precision than QDMiner on UserQ. After inves-
tigation, we find this is because that queries in UserQ
are more entity-like and more expanded entities are
included. The more entities we expand, the more risk
including unrelated items, which harms precision.
How to more accurately characterize the relationship
between facets and queries needs our further effort.
However, compared to QF-I and SEAL which have
high recall and significantly lower precision, QDMKB

achieves a reasonable balance between these two
aspects. To take ranking quality into consideration, we
calculate F1-nDCG. QDMKB gets highest F1-nDCG
(0.438 and 0.502 on UserQ and RandQ respectively)
and significantly outperforms other baselines.

(3) QDMKB significantly outperforms QF-I in terms of rp-
nDCG, F1-nDCG, and fp-nDCG on both datasets. In
terms of PRF and wPRF, QDMKB shows comparable
results on UserQ and superior results on RandQ com-
pared to QF-I. These results indicate that the facets
generated by QDMKB have comparable recall of facet
items with QF-I and much better ranking quality than
QF-I. QDMKB significantly outperforms QF-J, in terms
ofmostmetrics on both datasets.

(4) QF-J outperforms QF-I in terms of fp-nDCG and NMI,
whereas QF-I outperforms QF-J in terms of rp-nDCG,
F1-nDCG, PRF, and wPRF. These results indicate that
QF-I has much higher facet item recall than QF-J while
QF-J has much higher precision. This may be because
that we tune QF-I based on rp-nDCG during the cross
validation. There might be different results if QF-I is

TABLE 7
Overall Results on RandQ

Metric NMI F1 Pre Rec nDCG fp-nDCG rp-nDCG F1-nDCG PRF wPRF

QDMKB .800
$

y .412
$ y
z� .608yz� .380

$ y
z .832yz .604yz� .285

$ y
z� .502

$ y
z� .473

$ y
z� .494

$ y
z�

QDMiner
$

.758 .301 .592 .251 .837 .611 .234 .463 .354 .377
QF-Iy .639 .297 .320 .352 .579 .275 .138 .332 .349 .388
QF-Jz .771 .171 .282 .161 .511 .318 .108 .225 .223 .251
SEAL� .768 .207 .166 .423 .822 .320 .168 .425 .261 .319

TABLE 8
Precision Case Study

query:mobile phones

facet: nokia, samsung, apple, blackberry, htc, motorola, lg, sony ericsson, acer, alcatel, palm, iphone, dell (12 total)

result Nokia, Motorola, HTC, Panasonic, Samsung, Nexus One, NTT DoCoMo, BlackBerry, Siemens, Hewlett-Packard, Apple Inc., T-Mobile, . . .(21 total)

way use typeMobile Phone Brand(/user/robert/mobile_phones/mobile_phone_brand)

query:mobile phones

facet: bluetooth, gps, camera, fm radio, microsd card slot (5 total)

result Handheld GPS, Radio, Electric blanket, Lexmark, Chainsaw, Can opener, DVD player, Swiss Army knife, Spincast Fishing Reel, Flashlight, . . .(93 total)

way use entityMobile Phone’s property /award/ranked_item/appears_in_ranked_lists ! /award/ranked_list/ranked_list_items

The precision of the first case rises as opposed to the second case.
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tuned based on fp-nDCG or other metrics. Note that
QF-J does not have parameters to be tuned, hence we
have noway to improve recall for QF-J.

(5) QDMKB significantly outperforms SEAL, and SEAL
underperforms QDMiner in terms of rp-nDCG,
F1-nDCG, and fp-nDCG. We further experiment
with different numbers of seeds, and show the
results on UserQ in Fig. 3 (Similar results are
obtained on RandQ). Note that, number of seeds
in QDMKB means the number of items of each ini-
tial facet used for expansion (both type-based and
property-based). QDMKB consistently outperforms
SEAL, no matter how many seeds are used. Typi-
cal set expansion method can’t work well for facet
expansion.

5.2 Experiments with Different Components
In this paper, we use two different approaches to construct
facet candidates, namely facet generation and facet expansion.
Facet expansion includes two parts, namely property based
and type based expansion.We rename facet generation as dir-
property. We rename property based facet expansion as ex-
property and type based facet expansion as ex-type. Different
components may play different roles within QDMKB. In this
section, we experiment with one or combinations of these
components. Experimental results are shown in Tables 9

and 10. Note that dir-property+ex-property is the combination
of two components involving using property and ex-property
+ex-type combines two expansion components.

(1) QDMKB with all components gets the best results in
terms of rp-nDCG, F1-nDCG, PRF, and wPRF on both
datasets. This means that each component can contrib-
ute to the final model. Different components may dis-
cover different facet items for different queries.

(2) Each single component could improve quality of
query facets over QDMiner, except for dir-property.
Dir-property underperforms QDMiner on both data-
sets in terms of F1-nDCG. This is because that direclty
outputting propertiesmay bringmany noises.

(3) We get consistent rp-nDCG and F1-nDCG results,
i.e., ex-type>ex-property>dir-property, on both
datasets. This means that the type based expansion
is better than the property based method, and both
expansion methods are better than directly output-
ting properties. This may be because that the type
based expansion method could work on more
queries than the other two.

5.3 Experiments with Direct-Entity Queries
We further experiment with different components on direct-
entity queries. We denote queries that match entities in
Freebase as direct-entity queries, such as “Nokia” and
“Tom Cruise.” 47 out of 89 queries in UserQ and 55 out of
105 queries in RandQ are direct-entity queries as shown in
Table 5. Experimental results are shown in Tables 11 and 12.

Again, QDMKB with all components gets almost the best
results in terms of rp-nDCG, F1-nDCG, PRF, and wPRF on
both datasets, which is consistent with the results on all
queries. This further confirms each component has its
unique contribution. On RandQ, QDMKB is slightly worse
than expansion component, which indicates that dir-prop-
erty has high risk to include irrelevant items.

Fig. 3. Performance comparison of QDMKB and SEAL.

TABLE 9
Experimental Results of Different Components on UserQ

Metric NMI fp-nDCG rp-nDCG F1-nDCG PRF wPRF

QDMKB .841 .613�1 .239�1 �2 �3�4 �5 $ .438�1 �2�5 $ .410�1 �2�3 $ .428�1 �2 �3�4 $

QDMiner
$

.820 .620 .183 .402 .333 .349
dir-property�1 .883 .484 .187 .333 .270 .283
ex-property�2 .827 .611 .205 .407 .381 .396
ex-type�3 .834 .626 .210 .418 .366 .383
dir-property+ ex-property�4 .829 .609 .215 .418 .392 .406
ex-property+ ex-type�5 .828 .605 .212 .412 .390 .406

TABLE 10
Experimental Results of Different Components on RandQ

Metric NMI fp-nDCG rp-nDCG F1-nDCG PRF wPRF

QDMKB .800�2 �3�4 $ .604�1 .285�1 �2 �3�4 $ .502�1 �2$ .473�1 �2 �3�4 $ .494�1 �2 �3�4 $

QDMiner
$

.758 .611 .234 .463 .354 .377
dir-property�1 .842 .397 .182 .321 .224 .234
ex-property�2 .766 .617 .256 .478 .418 .438
ex-type�3 .781 .602 .264 .488 .394 .421

dir-property+ex-property�4 .766 .605 .249 .475 .369 .392

ex-property+ex-type�5 .785 .608 .276 .495 .444 .465
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Dir-property yields the best performance on NMI. This is
reasonable because a separate facet is created for each prop-
erty, and hence the clustering quality of generated facets is
higher than other methods.

5.4 Experiments with General Queries
We further conduct experiments on general queries. We
denote queries that match no entities in Freebase as general
queries, such as “chinese women tennis players.” Note that
only type-based facet expansion could be applied to general
queries. Experiment results are shown in Tables 13 and 14.

The results are consistent with the experiments on all
queries: QDMKB yields the best result of rp-nDCG and F1-
nDCG on both datasets. Overall, the improvement of rp-
nDCG and F1-nDCG on general queries is smaller than that
on direct-entity queries, this is because that additional dir-
property and ex-propertymethods are applied to direct-entity
queries. Another point worth noticing is that the gap of rp-
nDCG between these two kinds of queries on UserQ (from
0.271 to 0.196) is more obvious than that on RandQ (from
0.292 to 0.281). A reasonable explanation may be that the
queries in UserQ, which are issued by QDMiner users, are
more entity-like, so methods specifically designed for direct-

entity queries play an important role in improving facet qual-
ity. While for queries in RandQ, which are sampled from
query logs and more general, the results on direct-entity
queries and general queries are similar. Improving effective-
ness on general queries still needs our further effort.

5.5 Experiments with Different Settings
In this section, we will conduct experiments under different
settings including tsim, toverlap, and number of search results
used. We change tsim and toverlap from 0.1 to 0.9 by step 0.1
and the number of search results from 10 to 100 by step 10.
We only report the results on UserQ because we obtain sim-
ilar results on RandQ.

Fig. 4a shows that the dependency of experiment results
on tsim setting is slight. Because our approach for weighting
Freebase types and properties is based on voting, the final
result is not sensitive to the number of entities retrieved
from Freebase. Basically, lower tsim value tends to yield
slightly higher rp-nDCG, PRF, and wPRF, which indicates
that using relatively more entities could lead to more rea-
sonable voting result.

Fig. 4b shows that as toverlap goes up, fp-nDCG and nDCG
increase, NMI decreases, rp-nDCG, F1-nDCG, PRF, and

TABLE 11
Experiments with Direct-Entity Queries on UserQ

Metric NMI fp-nDCG rp-nDCG F1-nDCG PRF wPRF

QDMKB .856y� .631�1 yz� .271�3
$ y

z� .449�1 �3
$

yz� .430�1 �3
$

z� .447�1 �3
$

z�
dir-property�1 .957 .387 .207 .281 .193 .205
ex-property�2 .852 .628 .242 .423 .404 .421
ex-type�3 .844 .654 .219 .413 .352 .368
dir-property+ex-property�4 .856 .624 .256 .443 .417 .432
ex-property+ex-type�5 .849 .624 .248 .426 .415 .432

QDMiner
$

.838 .644 .199 .413 .313 .330
QF-Iy .741 .345 .147 .328 .408 .436
QF-Jz .839 .405 .128 .237 .292 .314
SEAL� .746 .344 .131 .381 .338 .388

TABLE 12
Experiments with Direct-Entity Queries on RandQ

Metric NMI fp-nDCG rp-nDCG F1-nDCG PRF wPRF

QDMKB .809
$ y
� .585�1 yz� .292�1

$ y
z� .484�1

$ y
z� .533�1 �3 �4

$

yz� .557�1 �3 �4
$

yz�
dir-property�1 .928 .191 .136 .177 .114 .123
ex-property�2 .783 .612 .279 .478 .485 .513
ex-type�3 .782 .589 .256 .464 .392 .425
dir-property+ ex-property�4 .782 .587 .256 .465 .392 .425
ex-property+ ex-type�5 .796 .610 .294 .488 .508 .535

QDMiner
$

.768 .600 .236 .449 .362 .396
QF-Iy .678 .230 .111 .273 .346 .382
QF-Jz .776 .308 .093 .189 .213 .247
SEAL� .749 .289 .148 .390 .258 .318

TABLE 13
Experiments with General Queries on UserQ

Metric NMI fp-nDCG rp-nDCG F1-nDCG PRF wPRF

QDMKB .824y� .596yz� .196yz� .420yz .380� .398
QDMiner

$
.800 .592 .165 .390 .356 .368

QF-Iy .730 .322 .123 .304 .399 .404

QF-Jz .801 .358 .108 .251 .341 .342
SEAL� .762 .312 .119 .377 .308 .374

TABLE 14
Experiments with General Queries on RandQ

Metric NMI fp-nDCG rp-nDCG F1-nDCG PRF wPRF

QDMKB .806y .611yz� .281
$ y
z� .521

$ y
z .397

$ z
� .415

$ z
�

QDMiner
$

.747 .623 .232 .479 .344 .355
QF-Iy .636 .324 .167 .397 .351 .395
QF-Jz .766 .329 .125 .264 .233 .242
SEAL� .788 .353 .190 .463 .264 .320
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wPRF increase at the beginning then decrease. These results
are consistent with intuition. The higher toverlap we use, the
more cautiously QDMKB expands the initial facets. So preci-
sion increases while recall decreases as toverlap rises. Metrics
such as rp-nDCG, F1-nDCG, PRF, and wPRF take both pre-
cision and recall into consideration, so that the best scores
of these metrics are achieved under moderate toverlap set-
tings. Note that the dependency of experiment results on
toverlap setting is still slight, which indicates that our method
doesn’t heavily rely on predefined parameters.

From Figs. 4c and 4d, we find that QDMKB consis-
tently gets superior rp-nDCG and F1-nDCG and compa-
rable fp-nDCG compared to QDMiner using different
number of search results. As number of search results
increases, performance also rises, which indicates the
necessity of leveraging both knowledge bases and search
results. Knowledge bases and search results are comple-
mentary to each other.

6 CONCLUSION

Existing query facet mining algorithms, including QDMiner,
QF-I, and QF-J mainly rely on the top search results from the
search engines. The coverage of facets mined using this kind
of methods might be limited, because usually only a small
number of results are used. We propose leveraging knowl-
edge bases as complementary data sources.We use twometh-
ods, namely facet generation and facet expansion, to mine
query facets. Facet generation directly uses properties in Free-
base as candidates, while facet expansion intends to expand
initial facets mined by QDMiner in property-based and type-
based manners. Experimental results show that our approach
is effective, especially for improving the recall of facet items.
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