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Abstract—We address the problem of finding query facets which are multiple groups of words or phrases that explain and summarize

the content covered by a query. We assume that the important aspects of a query are usually presented and repeated in the query’s top

retrieved documents in the style of lists, and query facets can be mined out by aggregating these significant lists. We propose a

systematic solution, which we refer to as QDMiner, to automatically mine query facets by extracting and grouping frequent lists from

free text, HTML tags, and repeat regions within top search results. Experimental results show that a large number of lists do exist and

useful query facets can be mined by QDMiner. We further analyze the problem of list duplication, and find better query facets can be

mined by modeling fine-grained similarities between lists and penalizing the duplicated lists.

Index Terms—Query facet, faceted search, summarization, user intent
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1 INTRODUCTION

WE address the problem of finding query facets. A query
facet is a set of items which describe and summarize

one important aspect of a query. Here a facet item is typically
a word or a phrase. A query may have multiple facets that
summarize the information about the query from different
perspectives. Table 1 shows sample facets for some queries.
Facets for the query “watches” cover the knowledge about
watches in five unique aspects, including brands, gender
categories, supporting features, styles, and colors. The
query “visit Beijing” has a query facet about popular resorts
in Beijing (tiananmen square, forbidden city, sum-
mer palace, . . .) and a facet on travel related topics
(attractions, shopping, dining, . . .).

Query facets provide interesting and useful knowledge
about a query and thus can be used to improve search expe-
riences in many ways. First, we can display query facets
together with the original search results in an appropriate
way. Thus, users can understand some important aspects of
a query without browsing tens of pages. For example, a
user could learn different brands and categories of watches.
We can also implement a faceted search [1], [2], [3], [4]
based on the mined query facets. User can clarify their spe-
cific intent by selecting facet items. Then search results
could be restricted to the documents that are relevant to the
items. A user could drill down to women’s watches if he is
looking for a gift for his wife. These multiple groups of
query facets are in particular useful for vague or ambiguous

queries, such as “apple”. We could show the products of
Apple Inc. in one facet and different types of the fruit apple
in another. Second, query facets may provide direct informa-
tion or instant answers that users are seeking. For example,
for the query “lost season 5”, all episode titles are shown in
one facet and main actors are shown in another. In this case,
displaying query facets could save browsing time. Third,
query facets may also be used to improve the diversity of
the ten blue links. We can re-rank search results to avoid
showing the pages that are near-duplicated in query facets
at the top. Query facets also contain structured knowledge
covered by the query, and thus they can be used in other
fields besides traditional web search, such as semantic
search or entity search [5], [6], [7].

We observe that important pieces of information about a
query are usually presented in list styles and repeated
many times among top retrieved documents. Thus we pro-
pose aggregating frequent lists within the top search results
to mine query facets and implement a system called
QDMiner. More specifically, QDMiner extracts lists from
free text, HTML tags, and repeat regions contained in the
top search results, groups them into clusters based on the
items they contain, then ranks the clusters and items based
on how the lists and items appear in the top results. We pro-
pose two models, the Unique Website Model and the Context
Similarity Model, to rank query facets. In the Unique Website
Model, we assume that lists from the same website might
contain duplicated information, whereas different websites
are independent and each can contribute a separated vote
for weighting facets. However, we find that sometimes two
lists can be duplicated, even if they are from different
websites. For example, mirror websites are using different
domain names but they are publishing duplicated content
and contain the same lists. Some content originally created
by a website might be re-published by other websites, hence
the same lists contained in the content might appear multi-
ple times in different websites. Furthermore, different web-
sites may publish content using the same software and the
software may generate duplicated lists in different websites.
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Ranking facets solely based on unique websites their lists
appear in is not convincing in these cases. Hence we pro-
pose the Context Similarity Model, in which we model the
fine-grained similarity between each pair of lists. More spe-
cifically, we estimate the degree of duplication between two
lists based on their contexts and penalize facets containing
lists with high duplication.

Compared to previous works on building facet hierar-
chies [1], [2], [3], [8], [9], our approach is unique in two
aspects: (1) Open domain. we do not restrict queries in a
specific domain, like products, people, etc. Our proposed
approach is generic and does not rely on any specific
domain knowledge. Thus it can deal with open-domain
queries. (2) Query dependent. instead of a fixed schema
for all queries, we extract facets from the top retrieved
documents for each query. As a result, different queries
may have different facets. E.g, query “watches” and
query “lost” have totally different query facets, as shown
in Table 1.

Experimental results show that quality of query facets
mined by QDMiner is good. We find that quality of query
facets is affected by the quality and the quantity of search
results. Using more results can generate better facets at the
beginning, whereas the improvement of using more results
ranked lower than 50 becomes subtle. We find that the Con-
text Similarity Model outperforms the Unique Website
Model, which means that we could further improve quality

of query facets by considering context similarity of the lists
during ranking the facets and items.

The remainder of this paper is organized as follows. We
briefly introduce related work in Section 2. Following this,
we propose QDMiner in Section 3. We discuss evaluation
methodology in Section 4 and report experimental results in
Section 5.7. We conclude the work in Section 6.

2 RELATED WORK

Mining query facets is related to several existing research
topics. In this section, we briefly review them and discuss
the difference from our approach.

2.1 Query Reformulation and Recommendation

Query reformulation and query recommendation (or query
suggestion) are two popular ways to help users better
describe their information need. Query reformulation is the
process of modifying a query that can better match a user’s
information need [10], [11], [12], [13], [14], [15], [16], and
query recommendation techniques generate alternative
queries semantically similar to the original query [17], [18],
[19], [20]. The main goal of mining facets is different from
query recommendation. The former is to summarize the
knowledge and information contained in the query,
whereas the latter is to find a list of related or expanded
queries. However, query facets include semantically related
phrases or terms that can be used as query reformulations
or query suggestions sometimes. Different from transitional
query suggestions, we can utilize query facets to generate
structured query suggestions, i.e., multiple groups of
semantically related query suggestions. This potentially
provides richer information than traditional query sugges-
tions and might help users find a better query more easily.
We will investigate the problem of generating query sugges-
tions based on query facets in future work.

2.2 Query-Based Summarization

Query facets are a specific type of summaries that describe
the main topic of given text. Existing summarization algo-
rithms are classified into different categories in terms of
their summary construction methods (abstractive or extrac-
tive), the number of sources for the summary (single docu-
ment or multiple documents), types of information in the
summary (indicative or informative), and the relationship
between summary and query (generic or query-based).
Brief introductions to them can be found in [21] and [22].
QDMiner aims to offer the possibility of finding the main
points of multiple documents and thus save users’ time on
reading whole documents. The difference is that most exist-
ing summarization systems dedicate themselves to generat-
ing summaries using sentences extracted from documents,
while we generate summaries based on frequent lists. In
addition, we return multiple groups of semantically related
items, while they return a flat list of sentences.

2.3 Entity Search

The problem of entity search has received much attention in
recent years [5], [6], [7]. Its goal is to answer information
needs that focus on entities. Mining query facets is related
to entity search as for some queries, facet items are kinds of

TABLE 1
Example Query Facets Mined by QDMiner

query:watches
1. cartier, breitling, omega, citizen, tag heuer, bulova, casio,
rolex, audemars piguet, seiko, accutron, movado, . . .

2. men’s, women’s, kids, unisex
3. analog, digital, chronograph, analog digital, quartz,
mechanical, . . .

4. dress, casual, sport, fashion, luxury, bling, pocket, . . .
5. black, blue, white, green, red, brown, pink, orange, yellow, . . .

query: lost
1. season 1, season 6, season 2, season 3, season 4, season 5
2. matthew fox, naveen andrews, evangeline lilly, josh holloway,
jorge garcia, daniel dae kim, michael emerson

3. jack, kate, locke, sawyer, claire, sayid, hurley, desmond,
boone, charlie, ben, juliet, sun, jin, . . .

4. what they died for, across the sea, what kate does, the
candidate, the last recruit, everybody loves hugo, the end, . . .

query: lost season 5
1. because you left, the lie, follow the leader, jughead, 316, . . .
2. jack, kate, hurley, sawyer, sayid, ben, juliet, locke, miles,
desmond, charlotte, various, sun, none, richard, daniel, . . .

3. matthew fox, naveen andrews, evangeline lilly, jorge garcia,
henry ian cusick, josh holloway, michael emerson, . . .

4. season 1, season 3, season 2, season 6, season 4

query:what is the fastest animals in the world
1. cheetah, pronghorn antelope, lion, thomson’s gazelle,
wildebeest, cape hunting dog, elk, coyote, quarter horse, . . .

2. birds, fish, mammals, animals, reptiles
3. science, technology, entertainment, nature, sports, lifestyle,
travel, gaming, world business

query: visit beijing
1. tiananmen square, forbidden city, summer palace, great wall,
temple of heaven, beihai park, hutong, . . .

2. attractions, shopping, dining, nightlife, tours, tip, . . .
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entities or attributes. Some existing entity search
approaches also exploited knowledge from structure of
webpages [23], [24], [25], [26]. Finding query facets differs
from entity search in the following aspects. First, finding
query facets is applicable for all queries, rather than just
entity related queries. Second, they tend to return different
types of results. The result of an entity search is entities,
their attributes, and associated homepages, whereas query
facets are comprised of multiple lists of items, which are not
necessarily entities.

2.4 Query Facets Mining and Faceted Search

Faceted search is a technique for allowing users to digest,
analyze, and navigate through multidimensional data. It is
widely applied in e-commerce and digital libraries. A robust
review of faceted search is beyond the scope of this paper.
Most existing faceted search and facets generation systems
[1], [2], [3], [8], [9], [27], [28], [29], [30] are built on a specific
domain (such as product search) or predefined facet catego-
ries. For example, Dakka and Ipeirotis [9] introduced an
unsupervised technique for automatic extraction of facets
that are useful for browsing text databases. Facet hierarchies
are generated for a whole collection, instead of for a given
query. Li et al. proposed Facetedpedia [8], a faceted retrieval
system for information discovery and exploration inWikipe-
dia. Facetedpedia extracts and aggregates the rich semantic
information from the specific knowledge database Wikipe-
dia. In this paper, we explore to automatically find query-
dependent facets for open-domain queries based on a general
Web search engine. Facets of a query are automatically
mined from the top web search results of the query without
any additional domain knowledge required. As query facets
are good summaries of a query and are potentially useful for
users to understand the query and help them explore infor-
mation, they are possible data sources that enable a general
open-domain faceted exploratory search. Similar to us, Kong
and Allan [31] recently developed a supervised approach
based on a graphical model tomine query facets. The graphi-
cal model learns how likely a candidate term is to be a facet
item and how likely two terms are to be grouped together
in a facet. Different from our approach, they used the

supervised methods. They further developed a facet search
system based on themined facets [4].

3 MINING QUERY FACETS

As the first trial of mining query facets, we propose auto-
matically mining query facets from the top retrieved docu-
ments. We implement a system called QDMiner which
discovers query facets by aggregating frequent lists within the
top results. We propose this method because:

(1) Important information is usually organized in list for-
mats by websites. They may repeatedly occur in a sentence
that is separated by commas, or be placed side by side in a
well-formatted structure (e.g., a table). This is caused by the
conventions of webpage design. Listing is a graceful way to
show parallel knowledge or items and is thus frequently
used by webmasters.

(2) Important lists are commonly supported by relevant
websites and they repeat in the top search results, whereas
unimportant lists just infrequently appear in results. This
makes it possible to distinguish good lists from bad ones,
and to further rank facets in terms of importance.

Experimental results in Section 5.7 confirm the above
observations and demonstrate that the query facets mined
by aggregating them are meaningful.

3.1 System Overview

We illustrate QDMiner in Fig. 1. In QDMiner, given a query
q, we retrieve the top K results from a search engine and
fetch all documents to form a set R as input. Then, query
facets are mined by:

1. List and context extraction Lists and their context are
extracted from each document in R. “men’s watches, wom-
en’s watches, luxury watches, . . .” is an example list
extracted.

2. List weighting All extracted lists are weighted, and thus
some unimportant or noisy lists, such as the price list
“299.99, 349.99, 423.99, . . .” that occasionally occurs in a
page, can be assigned by low weights.

3. List clustering Similar lists are grouped together to com-
pose a facet. For example, different lists about watch gender

Fig. 1. System overview of QDMiner.
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types are grouped because they share the same items
“men’s” and “women’s”.

4. Facet and item ranking Facets and their items are evalu-
ated and ranked . For example, the facet on brands is ranked
higher than the facet on colors based on how frequent the
facets occur and how relevant the supporting documents
are. Within the query facet on gender categories, “men’s”
and “women’s” are ranked higher than “unisex” and “kids”
based on how frequent the items appear, and their order in
the original lists.

We will describe the four modules in detail in the
remaining part of this section.

3.2 List and Context Extraction

From each document d in the search result set R, we extract
a set of lists Ld ¼ fl0g from the HTML content of d based on
three different types of patterns, namely free text patterns,
HTML tag patterns, and repeat region patterns. For each
extract list, we extract its container node together with the
previous and next sibling of the container node as its con-
text. We define that a container node of a list is the lowest
common ancestor of the nodes containing the items in the
list. List context will be used for calculating the degree of
duplication between lists in Section 3.5.

3.2.1 Free Text Patterns - TEXTS and TEXTP

We extract all text within document d and split it into sen-
tences. We then employ the pattern item{, item}* (andjor)
{other} item, which is similar to that in [24], to extract
matched items from each sentence. We name this sentence
based pattern as TEXTS . In Example 1, the items in italic
font are extracted as a list.

Example 1. We shop for gorgeous watches from Seiko,
Bulova, Lucien Piccard, Citizen, Cartier or Invicta.

We further use the pattern {^item (:j-) .+$}+ to extract
lists from some semi-structured paragraphs. It extracts lists
from continuous lines that are comprised of two parts sepa-
rated by a dash or a colon. The first parts of these lines are
extracted as a list. For instance, we extract all text in italic
font in Example 2 as a list. We named this text-based pattern
as TEXTP .

Example 2 ...are highly important for following reasons:
Consistency - every fact table is filtered consistently res...
Integration - queries are able to drill different processes ...
Reduced development time to market - the common facets

are available without recreating the wheel over again.
For a list extracted by the pattern TEXTS , its container

node is the sentence containing the extracted list. For exam-
ple in Example 1, the entire sentence (i.e., “We shop for ...
Invicta”) is the “Container” context for the list {Seiko,
Bulova, ..., Invicta}. Similarly, for a list extracted by pat-
tern TEXTP , its container node is the paragraph containing
the items. We then add the previous and next sentence or
paragraph into the context correspondingly.

3.2.2 HTML Tag Patterns-HTMLTAG

We extract lists from several list-style HTML tags, including
SELECT, UL, OL, and TABLE. We named these simple
HTML tag based patterns as HTMLTAG. Example sources of

these HTML tags can be found in Table 2. Extracted items
are in italic.

SELECT For the SELECT tag, we simply extract all text
from their child tags (OPTION) to create a list. Moreover,
we remove the first item if it starts with some predefined
text, such as “select” or “choose”.

UL/OL For these two tags, we also simply extract text
within their child tags (LI).

TABLEWe extract one list from each column or each row.
For a table containing m rows and n columns, we extract at
most mþ n lists. For each column, the cells within THEAD
or TFOOT tags are regarded as table headers and are
dropped from the list. We also drop the first cell of each col-
umn when its cascading style1 is different from other cells.

For a list extracted from a HTML element like SELECT,
UL, OL, or TABLE by pattern HTMLTAG, its context is com-
prised of the current element and the previous and next ele-
ment if any. For a list extracted from rows or columns of a
HTML table element, its container node is the table.

3.2.3 Repeat Region Patterns-REGION

We observe that peer information is sometimes organized in
well-structured visual blocks in webpages. Fig. 2 shows a
repeat region comprised of four blocks in repeated style.
Each block contains a restaurant record that includes four
attributes: picture, restaurant name, location description,
and rating. We extract three lists from this region: a list of
restaurant names, a list of location descriptions, and a list of
ratings, and we ignore images in this paper.

To extract these lists, we first detect repeat regions in
webpages based on vision-based DOM trees [32]. Here a
repeat region is the region that includes at least two adjacent
or nonadjacent blocks, e.g., M blocks, with similar DOM
and visual structures. We then extract all leaf HTML nodes
within each block, and group them by their tag names and
display styles. In the above example, all restaurant names

TABLE 2
Example HTML Sources that Contain Lists

SELECT:
<select name=”ProductFinder2” id=”ProductFinder2” >
<option value=”WatchBrands.htm” >Watch Brands</option>
<option value=”Brands-Accutron.htm”>Accutron</option>
<option value=”Brands-Bulova.htm”>Bulova</option>
<option value=”Brands-Caravelle.htm”>Caravelle</option>
<option value=”Brands-Seiko.htm”>Seiko</option></select>

UL:
<ul><li><a href=”/rst.asp?q=dive”>Dive</a></li>
<li><a href=”/rst.asp?q=titanium”>Titanium</a></li>
<li><a href=”/rst.asp?q=automatic”>Automatic</a></li>
<li><a href=”/rst.asp?q=quartz”>Quartz</a></li>
<li><a href=”/rst.asp?q=gold”>Gold</a></li></ul>

TABLE:
<table width=”100%”>
<tr><td width=”10%”></td><td>White</td></tr>
<tr><td></td><td height=”20”>Red</td></tr>
<tr><td></td><td height=”20”>Black</td></tr>
<tr><td></td><td height=”20”>Pink</td></tr>
<tr><td height=”4” colspan=”2”></td></tr></table>

1. http://www.w3.org/Style/CSS/
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have the same tag name (<a>) and displaying style (in blue
color), and they can be grouped together. Each group usu-
ally contains M nodes. Each two of them are from different
blocks. At last, for each group, we extract all text from its
nodes as a list. We named this kind of pattern as REGION .

For a list extracted from a repeat region, we choose the
lowest common ancestor element of all blocks of the repeat
region as a container node (i.e., the smallest element con-
taining the entire repeat region). Note that the blocks con-
tained in a repeat region can be nonadjacent, hence the
container node may not be the parent element of a block.
We then use the previous and next element together with
the container element as the context of the list.

3.2.4 Post-Processing

We further process each extracted list l0 as follows. We first
normalize all items by removing useless symbol characters,
such as ‘[’ and ‘]’, and converting uppercase letters to lower-
case. We then remove long items which contain more than
20 terms. At last, we remove all lists that contain less than
two unique items or more than 200 unique items.

3.3 List Weighting

Some of the extracted lists are not informative or even use-
less. Some of them are extraction errors. Table 3 shows
some sample lists for the query “watches”. The first three
lists are navigational links which are designed to help users
navigate between webpages. They are not informative to
the query. The fourth list is actually an extraction error: sev-
eral types of information are mixed together.

We argue that these types of lists are useless for finding
facets. We should punish these lists, and rely more on better
lists to generate good facets. We find that a good list is usu-
ally supported by many websites and appear in many docu-
ments, partially or exactly. A good list contains items that
are informative to the query. Therefore, we propose to
aggregate all lists of a query, and evaluate the importance
of each unique list l by the following components:

(1) Sdoc: document matching weight. Items of a good list
should frequently occur in highly ranked results. We let

Sdoc ¼
P

d2R smd � srd
� �

, where smd � srd is the supporting score

by each result d, and:

� smd is the percentage of items contained in d. A list l
is supported by a document d, if d contains some or all
items of l. The more items d contains, the stronger it
supports l. SupposeNl;d is the number of items which
appear both in list l and document d, and jlj is the

number of items contained in list l, we let smd ¼ Nl;d

jlj .
� srd measures the importance of document d. It is

derived from ranks of documents in this paper. The

documents ranked higher in the original search
results are usually more relevant to the query,
hence they are more important. We simply let

srd ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
rankd

p
, where rankd is the rank of document

d. The higher d is ranked, the larger its score srd is.
(2) Sidf: average invert document frequency (IDF) of

items. A list comprised of common items in a corpus is not
informative to the query. We calculate the average

IDF value of all items, i.e., Sidf ¼ 1
jlj �

P
e2l idfe. Here idfe ¼

log N�Neþ0:5
Neþ0:5 , where Ne is the total number of documents

that contain item e in the corpus and N is the total number
of documents. We use the ClueWeb09 collection2 as our ref-
erence corpus in countingNe and N .

We combine the above components, and evaluate the
importance of a list l by Eq. (1).

Sl ¼ Sdoc � Sidf: (1)

Finally, we sort all lists by final weights for the given query.
The first three lists in Table 3 are assigned low weights as
they have low average invert document frequencies. The
weight of the fourth list is also low. Its most items just
appear in one document in top results; hence it has a low
document matching weight.

3.4 List Clustering

We do not use individual weighted lists as query facets
because: (1) An individual list may inevitably include noise.
For example, the first item of the first list in Table 2, i.e.,
“watch brands”, is noise. It is difficult to identify it without
other information provided; (2) An individual list usually
contains a small number of items of a facet and thus it is far
from complete; (3) Many lists contain duplicated informa-
tion. They are not exactly same, but share overlapped items.
To conquer the above issues, we group similar lists together
to compose facets.

Two lists can be grouped together if they share enough
items. We define the distance dlðl1; l2Þ between two lists l1

and l2 as dlðl1; l2Þ ¼ 1� jl1\l2j
minfjl1j;jl2jg. Here jl1 \ l2j is the number

of shared items within l1 and l2. We use the complete link-
age distance dcðc1; c2Þ ¼ maxl12c1;l22c2dlðl1; l2Þ to compute the

distance between two clusters of lists. This means that two
groups of lists can only be merged together when every two
lists of them are similar enough.

We use a modified QT (Quality Threshold) clustering
algorithm [33] to group similar lists. QT is a clustering

Fig. 2. An example repeat region in a webpage.

TABLE 3
Less Informative List Examples

Items (separated by commas)

1 we recommend, my account, help
2 home, customer service, my account, tracking, faq’s
3 read, edit, view history
4 movado 605635 luno two tone. . . 547.50 717.00 1 rating

1 review, movado museum strap 0690299. . . 225.00
395.00 1 rating, citizen calibre 2100 av0031. . . 299.00
350.99 11 ratings

2. http://boston.lti.cs.cmu.edu/Data/clueweb09/

DOU ET AL.: AUTOMATICALLY MINING FACETS FOR QUERIES FROM THEIR SEARCH RESULTS 389



algorithm that groups data into high quality clusters. Com-
pared to other clustering algorithms, QT ensures quality by
finding large clusters whose diameters do not exceed a
user-defined diameter threshold. This method prevents dis-
similar data from being forced under the same cluster and
ensures good quality of clusters. In QT, the number of clus-
ters is not required to be specified.

The QT algorithm assumes that all data is equally impor-
tant, and the cluster that has the most number of points is
selected in each iteration. In our problem, lists are not
equally important. Better lists should be grouped first. We
modify the original QT algorithm to first group highly
weighted lists. The algorithm, which we refer to as WQT
(Quality Threshold with Weighted data points), is
described as follows.

1) Choose a maximum diameter Diamax and a mini-
mum weightWmin for clusters.

2) Build a candidate cluster for the most important point
by iteratively including the point that is closest to the
group, until the diameter of the cluster surpasses the
threshold Diamax. Here the most important point is
the list which has the highest weight.

3) Save the candidate cluster if the total weight of its
points wc is not smaller than Wmin, and remove all
points in the cluster from further consideration.

4) Recurse with the reduced set of points.
Recall that the main difference between WQT and QT is

that WQT tries to get more neighbours for important points,
and generated clusters are biased towards important points.
Suppose we have six lists: l1 ¼(cartier, breitling, omega, citi-
zen), l2 ¼(breitling, omega, citizen, tag heuer), l3 ¼ (brei-
tling, omega, citizen, movie, music, book), l4 ¼ (movie,
music, book), l5 ¼ (music, book, radio), and l6 ¼ (movie,
book, radio). Their corresponding weights satisfy: Sl1 >
Sl2 > Sl3 > Sl4 > Sl5 > Sl6. QT ignores their weights and
generate a cluster (l3; l4; l5; l6) in the first iteration with
Diamax ¼ 0:6, whereas WQT will generate a cluster (l1; l2; l3)
for list l1. We prefer the second result, especially when Sl1 is

much larger than Sl3 . In addition, WQT is more efficient

than QT, as it just builds one candidate cluster while QT
builds a candidate cluster for each remaining point.

In this paper, the weight of a cluster is computed based
on the number of websites from which its lists are extracted.
More specifically, wc ¼ jSitesðcÞj where SitesðcÞ is the set of
websites that contain lists in c. Note we use websites instead
of webpages because webpages from the same website usu-
ally share the same page templates and contribute dupli-
cated lists.

After the clustering process, similar lists will be grouped
into a candidate query facet.

3.5 Facet Ranking

After the candidate query facets are generated, we evaluate
the importance of facets and items, and rank them based on
their importance.

Based on our motivation that a good facet should fre-
quently appear in the top results, a facet c is more important
if: (1) The lists in c are extracted from more unique content
of search results; and (2) the lists in c are more important,
i.e., they have higher weights. Here we emphasize “unique”

content, because sometimes there are duplicated content
and lists among the top search results. We will introduce
more details about this later. We define Sc, the importance
of facet c, as follows:

Sc ¼
X

G2{ðcÞ
SG ¼

X

G2{ðcÞ
max
l2G

Sl:

Here {ðcÞ is ideally the set of independent groups of lists
contained in query facet c. SG is the weight of a group of
lists G, and sl is the weight of a list lwithin the group G.

We propose two models, the Unique Website Model and
the Context Similarity Model, to calculate Sc.

3.5.1 Unique Website Model

Because a same website usually deliver similar information,
multiple lists from a same website within a facet are usually
duplicated. A simple method for dividing the lists into dif-
ferent groups is checking the websites they belong to. We
assume that different websites are independent, and each
distinct website has one and only one separated vote for
weighting the facet. i.e, we let {ðcÞ ¼ SitesðcÞ and recall that
SitesðcÞ is the set of unique websites containing lists in c.
Then we have:

Sc ¼
X

s2SitesðcÞ
max
l2c;l2s

Sl: (2)

3.5.2 Context Similarity Model

In the Unique Website Model, we used “website” as a sim-
ple signal for creating groups. We assumed that lists from
a same website might contain duplicated information,
whereas different websites are independent and each can
contribute a separated vote for weighting facets. In this sec-
tion, we want to further explore better ways for modelling
the duplication among lists for weighting facets. Ideally, we
hope that all groups are totally independent to each other.
However, we do find the dependence between some web-
sites and the lists from these websites are sometimes dupli-
cated, including but not limited to the cases as follows.

Mirror websites. Mirror websites are using different
domain names but are usually publishing duplicated con-
tent. For example, http://abcnews.go.com/and http://
media.abcnews.com/are mirror sites containing almost the
same content.

Content republishing. Our study shows that some content
originally created by a website might be re-published by
other websites, after modifying the content a little bit or
keeping all content unchanged. As shown in Fig. 3, the web-
page from myfox8.com republished the news originally
reported by cnn.com.

Same publishing software. Different websites may publish
content using the same software. For example, many forums
are powered by Discuz!, a popular Internet forum software
written in PHP and developed by Comsenz Technology
Co., Ltd. This inevitably generates some duplicated content
regions, such as the menus and navigation bars, among dif-
ferent websites.

Due to the existences of the above cases, there may be
duplicated content regions contained in different webpages
from different websites, and they finally generate
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duplicated lists. These duplicated lists may boost up some
less useful facets in the Unique Website Model because they
are from different websites and each has a separate vote for
weighting facets.

An intuitive method for solving the above problem is just
remaining one representative document among all dupli-
cates and removing the left. A variety of techniques have
been developed to identify pairs of near-duplicated docu-
ments on the Web, such as SimHash [34] or Shingling [35].
Popular commercial search engines like Google and Bing
have already considered this problem and they remove
duplicates from search results. However, we find that
removing duplicated documents fails to solve all the prob-
lems we discussed above. Sometimes, two webpages may
just have a small region containing duplicated content, but
their full content are not similar enough to be identified as
duplicates by SimHash or Shingling. Because of this, we
propose modelling the fine-grained similarity between each
pair of lists. More specifically, we estimate the degree of
duplication between two lists based on the similarity of
their contexts but not the entire pages.

List duplication estimation.We rely on the text contained in
the context to model list similarity, because text is the most
popular way to describe content on the Web and it can be
directly viewed by users. We may explore others kinds of
information, such as HTML DOM structures or HTML
source, in future work. There are several ways to measure
the similarity between two pieces of text, such as the cosine
similarity for vector space model, or the Jaccard similarity
coefficients. Instead of using the original text, we use the
SimHash [34] algorithm to first encode each context into a
64-bit fingerprint. This make it possible to extract all lists
and their contexts contained in all documents, and building
their fingerprints into index with less space cost in search
engines. During query time, we can efficiently calculate sim-
ilarities between lists after initial facets are generated. Simi-
larity between two lists l1 and l2 is then calculated based on
Hamming Distance distðl1; l2Þ between the fingerprints of
their context:

DupLðl1; l2Þ ¼ 1� distðl1; l2Þ
LS

;

where LS is the length of fingerprint and we use LS ¼ 64,
consistent to existing approaches.

List grouping. Assuming that we already have a function
DupLðl1; l2Þ for modelling the similarity or duplication
between two lists l1 and l2, we employee the WQT algo-
rithm introduced in Section 3.4 to further group lists into
groups. Note that the similarity function we mention here is
totally different from that used for grouping lists into facets
in Section 3.4. Here the similarity is mostly about the dupli-
cation between two lists, in terms of whether two lists are
representing dependent sources, while the original similar-
ity used for clustering lists into facets are mainly about
whether two lists are talking about the same type of infor-
mation, and whether they should be in a same facet.

We set the weight of a group to the count of lists it con-
tains, and set the minimum weight Wmin to 1.0 which sim-
ply means that each group has at least one list. The detailed
grouping process is as follows.

1) Choose a duplicate threshold uDup.
2) Build a candidate group for the list that has the high-

est weight by iteratively including the list that is clos-
est to the group, until the diameter of the cluster
surpasses the threshold uDup.

3) Save the candidate group no matter how many lists
it contains (because Wmin ¼ 1:0), and remove all lists
in the group from further consideration.

4) Re-curse with the reduced set of lists.
We use the complete linkage distance dGðG1; G2Þ ¼

maxl12G1;l22G2
1�DupLðl1; l2Þ to compute the distance

between two group of lists G1 and G2.

3.6 Item Ranking

In a facet, the importance of an item depends on how many
lists contain the item and its ranks in the lists. As a better item
is usually ranked higher by its creator than a worse item in
the original list, we calculate Sejc, the weight of an item e
within a facet c, by:

Sejc ¼
X

s2{ðcÞ
wðc; e; {Þ ¼

X

G2{ðcÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AvgRankc;e;G

p ; (3)

where wðc; e; GÞ is the weight contributed by a group of lists
G, and AvgRankc;e;G is the average rank of item e within all

Fig. 3. An example of copied pages.
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lists extracted from group G. Suppose Lðc; e; GÞ is the set of
all lists in c and G (G � c) that contain item e, we have

AvgRankc;e;G ¼ 1

jLðc; e;GÞj
X

l2Lðc;e;GÞ
rankejl:

And wðc; e; GÞ gets the highest score 1.0 when the item e is
always the first item of the lists from G. For the Unique
Website Model, we have

Sejc ¼
X

s2SitesðcÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AvgRankc;e;s

p (4)

based on the same assumption used in Eq. (2). Here {ðcÞ �
SitesðcÞ and AvgRankc;e;s is the average rank of item e

within all lists from website s.
We sort all items within a facet by their weights. We

define an item e is a qualified item of facet c if Sejc > 1 and

Sejc > j{ðcÞj
10 . Note that Sejc > 1 can only be satisfied (i.e., e is

qualified) when there are at least two groups containing e.

Sejc > j{ðcÞj
10 means that it should be supported by at least 10

percent of all groups within this facet. We only output qual-
ified items by default in QDMiner.

4 EVALUATION METHODOLOGY

4.1 Data

We do not find any publicly available dataset for evaluating
query facets. Therefore, we build two datasets from scratch.
First, we build a service for finding facets, and invite human
subjects to issue queries on topics they know well. We col-
lect 89 queries issued by the subjects, and name them as
“UserQ”. As this approach might induce a bias towards
topics in which lists are more useful than general web
queries, we further randomly sample another set of 105
English queries from a query log of a commercial search
engine, and name this set of queries as “RandQ”.

For each query, we first ask a subject to manually create
facets and add items that are covered by the query, based
on his/her knowledge after a deep survey on any related
resources (such as Wikipedia, Freebase, or official web sites
related to the query). We then aggregate the qualified items
in the facets returned by all algorithms we want to evaluate,
and ask the subject to assign unlabelled items into the cre-
ated facets. New facets will be created for the items that are
not covered by the existing facets. A facet named “misc” is
automatically created for each query by the labelling sys-
tem. Subjects can add the noisy or irrelevant items into this
facet. The main purpose of creating this “misc” facet is to
help subjects to distinguish between bad and unjudged
items. During evaluation, “misc” facets are discarded before
mapping generated facets to manually labelled facets.

For each human created facet, we ask the subject who has
created the facet and four additional subjects to rate its use-
fulness in three levels:

[Good/2] - It is very useful and I like it;
[Fair/1] - It is related but not so useful;
[Bad /0] - It is useless and I don’t like it.
The rating that is most chosen by subjects is regarded as

the final rating of the facet. The higher one is used if two rat-
ings get the same number of votes. The ratings for “misc”

facets are automatically set to “Bad” by default and subjects
cannot change them.

We get reasonable inter-rater agreement on both data-
sets. The value of Fleiss’ kappa [36] on UserQ dataset is
0.7586 which means a substantial agreement based on [37].
Fleiss’ kappa value on RandQ is 0.4936 which shows a mod-
erate agreement.

Table 4 shows the statistics about human labeled query
facets. There are on average about 4.9 good facets and 5.3
fair facets for each query in the UserQ collection, while there
are about 2.9 good facets and 2.1 fair facets for the RandQ
collection. There are more facets and items in UserQ than in
RandQ. This is because the queries in RandQ are randomly
sampled from query logs. Some of them are too specific or
noisy to have meaningful facets.

The assessment of query facets is time-consuming and
costly. Each subject may spend up to an hour to completely
assess a query. We shared datasets at http://playbigdata.
com/qd2/datasets.aspx to save efforts on gathering such
kinds of datasets.

4.2 Evaluation Metrics

The quality of query facets can be measured in the following
two aspects:

Quality of clustering - Ideally, each facet should only con-
tain items reflecting the same facet of the query, and the
items referring to the same information should not be sepa-
rated into multiple facets. In this paper, we use several
existing metrics [38], including Purity, NMI (Normalized
Mutual Information), RI (Random Index), and F measure, to
evaluate the quality of clusters.

Ranking effectiveness of facets - Obviously we aim to rank
good facets before bad facets when multiple facets are
found. As we have multi-level ratings, we adopt the nDCG
measure (Normalized Discounted Cumulative Gain), which
is widely used in information retrieval, to evaluate the rank-
ing of query facets. Suppose that each output facet ci is
assigned to a manually labelled class c0i which covers the
maximum number of items in ci. The ranking quality of top

p facets is calculated by nDCGp ¼ DCGp

IDCGp
where DCGp ¼Pp

i¼1 DGi and IDCGp is the ideal cumulative gain which is
produced by the perfect ordering. DGi is the discounted

gain of ith facet. DGi ¼ 2ri�1

log 2ð1þiÞ if the rating of c0i is ri. In our

problem, a ground truth class may be divided into multiple
facets in automatic results. Hence DCGp may exceed IDCGp

and nDCG may exceed 1 in some cases. To solve this prob-
lem, for each ground truth class c0i, we only credit the first
facet that is assigned to it, and skip all later ones.

TABLE 4
Statistics About Human Created Facets

Item UserQ - 89 queries RandQ - 105 queries

Bad Fair Good Bad Fair Good

#Facets 393 469 434 216 224 308
#Facets/Q 4.4 5.3 4.9 2.1 2.1 2.9
#Items 12,018 13,425 19,483 6,456 9,064 10,239
#Items/Q 135 151 219 61 86 98
#Items/Facet 31 29 45 30 40 33
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nDCG does not consider the quality of clustering which
does influence user satisfaction. To evaluate the integrated
effectiveness, we let DCGp ¼

Pp
i¼1 wi �DGið Þ where wi is a

weight for each automatic facet ci, and propose two alterna-
tive nDCGmeasurements.

fp-nDCG - purity aware nDCG based on the first appearance
of each class. Different from the original nDCG, we further
consider the purity of each facet ci by multiplying DGi by
the percentage of correctly assigned items, i.e., we let

wi ¼ jc0
i
\cij
jcij .

rp-nDCG - recall and purity aware nDCG. rp-nDCG is cal-
culated based on all output facets. We weight each facet by

wi ¼ jc0
i
\cij
jcij

jc0
i
\cij
jc0
i
j . Here

jc0
i
\cij
jc0
i
j is the percentage of items in c0i

matched by the current output facet ci. rp-nDCG ranges
from 0 to 1, and the best value 1 is achieved when all items
are correctly classified into the right facets.

We further use the evaluation metrics PRF and wPRF
proposed by Kong and Allan [31]. PRF is a harmonic mean
of precision of facet terms, recall of facet terms and facet
clustering F1. wPRF further takes into account the ratings
associated with query facets, and it uses weighted facet
term precision, recall, and clustering F1. Neither PRF nor
wPRF accounts for facet ranking effectiveness.

We calculate the above metrics based on the top 10 facets
for each query, and then average them over all queries. We
argue that ranking quality is generally more important than
clustering quality for query facets. We prefer to generating
useful facets that may contain a little noise rather than pure
but useless facets.

5 EXPERIMENTAL RESULTS

5.1 Overall Results

We mine query facets based on top 100 results from a com-
mercial search engine. We use a five-fold cross validation to
tune the clustering parameters Diamax and Wmin on fp-
nDC@10. We use fp-nDCG for tuning rather than rp-nDCG
because we think that ranking quality and precision of fac-
ets is much more important than item recall in practice.

In the remaining part of the paper, we name the
approach that use the Unique Website Model for item rank-
ing as QDMiner and will discuss the Context Similarity
Model in Section 5.7. The experimental results are shown in
Table 5. We find that:

(1) Clustering quality on the UserQ collection is good,
with a high purity score (0.909) and reasonable scores of
NMI, RI, F1, and F5. RandQ has a lower NMI of 0.749 than
UserQ (0.809). This indicates that more small facets, which
are from the same ground truth classes, are generated in

RandQ than in UserQ. This may happen when the quality
of search results is not good and there is not enough evi-
dence to group similar lists.

(2) Rankings of query facets on both datasets are effective
in terms of nDCG and fp-nDCG. rp-nDCG values are rela-
tively low on these datasets, which indicates that only a small
percentage of human labelled items are returned in the out-
put facets. This is caused by the following reasons. First,
some items do not appear in the top search results, and some
of them are not presented in list styles. Second, we just evalu-
ate qualified items for each facet. After investigating the data,
we find that only about 1/3 of items are predicted to be quali-
fied. This may cause low item recall of QDMiner. Third, it is
difficult to enumerate all items. For example, there are hun-
dreds of items within the labeled facet “watch brands” for
the query “watches”. These items are collected from a large
number of results generated by different algorithms, and it is
not easy for one specific algorithm to enumerate all of them.
Fourth, some items in the labeled facets are actually variants
of the samemeaning. For example, “season one” and “season
1” are exactly the same in meanings. These duplicated items
may cause low recall if one algorithm can only return one of
them. To overcome the issue, we plan to identify similar
items in labeling facets in the future.

To better understand the quality of the generated facets,
we show some statistics about the generated query facets
with clustering parameters Diamax ¼ 0:6 and Wmin ¼ 3 in
Table 6. Note that we select these two parameters because
they are mostly selected by each fold during the cross vali-
dation tuning on fp-nDCG@10. We do not directly use
the results generated by cross validation, because they
are possibly generated by different clustering parameters
from each fold. On average for each query in UserQ, there
are about 32.1 facets generated. Each facet contains about
20.8 unique items, and 7.5 of them are classified as quali-
fied ones. Among the top five facets, about 2.3 facets are
labeled as good, and 1.2 ones are labeled as fair. There
are 3.1 good facets 2.2 fair facets within the top 10
returned facets. The queries in RandQ have less lists and
facets than UserQ. As we mentioned in Section 4, this is
because some randomly sampled queries in RandQ are
too specific or not well-formed.

Some samples of generated query facets with the settings
have been shown in Table 1. We find that our generated top
facets are generally meaningful and useful for users to
understand queries.

TABLE 5
Quality of Query Facets, Tuned on fp-NDCG@10

Dataset Purity RI F1 F5 NMI

UserQ 0.909 0.890 0.723 0.674 0.809
RandQ 0.878 0.842 0.728 0.680 0.749

nDCG fp-nDCG rp-nDCG PRF wPRF

UserQ 0.683 0.631 0.222 0.371 0.382
RandQ 0.697 0.640 0.262 0.385 0.409

TABLE 6
Statistics About the Query Facets Generated with
100 Search Results,Diamax ¼ 0:6 andWmin ¼ 3

Desc. UserQ RandQ

#queries 89 105
#results per query 99.8 99.5
#lists per document 44.1 37.0
#Items per list 9.7 10.1
#Facets per query 32.1 21.6
#lists per facet 7.1 6.4
#items/qualified items per facet 20.8/7.5 23.7/8.7
#good/fair facets among top five facets 2.3/1.2 1.7/1
#good/fair facets among top 10 facets 3.1/2.2 2.0/1.3
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5.2 Comparison with Existing Approaches

We implement the supervised method QF-I and QF-J pro-
posed by Kong and Allan [31]. We use the lists extracted
from search results with QDMiner for QF-I and QF-J for fair
comparison. We use the same features, standardization
method, and stratification method, as those in [31]. Same
with QDMiner, we use a five-fold cross validation for train-
ing and parameter tuning on fp-nDCG@10 for QF-I. For QF-
J, there are no parameter need to be tuned. Experimental
results are shown in Table 7. We find that:

(1) QDMiner outperform QF-I and QF-J in terms of fp-
nDCG, rp-nDCG, PRF, and wPRF, and all improvement are
statistically significant with the two-tailed paired t-test. For
the improvement over QF-I on fp-nDCG@10 and UserQ, t
stat is 10.7, p value is 1.5E-17, the degree of freedom df is 88,
and Poisson’s coefficient of correlation is 0.56. For PRF, the
values of t, p, and Poisson’s coefficient of correlation are 7.1,
2.9E-10, and 0.53, respectively. We get consistent conclu-
sions on RandQ dataset, and skip details for statistical sig-
nificance test due to space limitation.

(2) QF-I gets a fp-nDCG score 0.469 on UserQ and 0.400
on RandQ, which are higher than those reported in [31]
(note that different datasets are used in [31]) but the results
are significantly worse than QDMiner as reported above.
This may be because that QF-I does not explicitly model the
importance of facets, hence the outputted facet ranking is
not as good as QDMiner. The performance of QDMiner
reported in [31], with a fp-nDCG score 0.257, is much
lower than what we get on the datasets we used in this
paper. This might be because that they just used pattern
TEXTS and HTMLTAG to extract lists, while we further
used TEXTp and REGION . The later two patterns are
very effective for extracting useful lists, and ignoring
them may significantly reduce the number of lists
extracted and impact recall of facets.

(3) On both datasets, QF-I is better than QF-J in terms of
fp-nDCG@10, while it is worse than QF-J in terms of rp-
nDCG, PRF, and wPRF. We used fp-nDCG@10 to select the
best parameters during the cross validation for QF-I. QF-I
may prevent some less similar lists to be grouped to get rea-
sonable facet ranking quality, and this may hurt item recall.

Consistent with [31], we further experiment with tuning
QF-I and QDMiner on each metric itself. Note that tuning
for each evaluation metric is sometimes not practical. We
report this kind of results just for learning more about the
potential of each algorithm. The results are shown in Table 8.
Please note that there is no parameters need to be tuned for
QF-J, so QF-J has the same results in Tables 7 and 8.

For QF-I, its rp-nDCG, PRF, and wPRF scores get much
better when tuning on themselves on both datasets. QF-I

significantly outperform QDMiner in terms of PRF and
wPRF (p values are 5.3E-07 and 2.8E-10) on UserQ, whereas
QDMiner significantly outperform QF-I in terms of
fp-nDCG@10 and rp-nDCG@10 (p values are 1.5E-17 and
2.8E-24). On RandQ, QDMiner outperforms QF-I in terms of
fp-nDCG, rp-nDCG, and PRF. It underperforms QF-I in
terms of wPRF.

In the remaining part, we only report the results on
UserQ due to space limitations. In most experiments, we get
the same conclusions on RandQ and UserQ.

5.3 Experiments with Different Types of Lists

As introduced in Section 3.2, we use three different types of
patterns to extract lists from webpages, namely free text pat-
terns (Text), HTML tag patterns (Tag), and repeat region
patterns (RepeatRegion). In this section, we experiment
with different types of lists, and investigate whether they
are useful. Experimental results are shown in Fig. 4. The
figure indicates that the sole use of any type of list yields
reasonable results, but a combination of them (series ALL)
performs the best. This is intuitive because more lists pro-
vide more evidence for weighting important lists and gener-
ating better facets.

The repeat region based and HTML tag based query fac-
ets have better clustering quality but worse ranking quality
than the free text based ones. By analyzing the data, we find
that many lists appear in the header or the left region of web-
pages in well formatted HTML structures. They are origi-
nally designed to help users navigate between webpages,
hence we call them “navigational lists” in this paper. These
navigational lists are easily extracted by HTML tag based or
repeat region based patterns with high precision, but they
are usually irrelevant to the query. The first two lists in
Table 3 are such kinds of lists. Although we have punished
them in Section 3.3, there are still some useless facets

TABLE 7
Comparison with QF-I & QF-J, Tuned on fp-nDCG

Dataset Method fp-nDCG rp-nDCG PRF wPRF

UserQ QDMiner 0.631 0.222 0.371 0.382
QF-I 0.469 0.119 0.282 0.296
QF-J 0.400 0.135 0.343 0.363

RandQ QDMiner 0.640 0.262 0.385 0.409
QF-I 0.417 0.089 0.153 0.157
QF-J 0.348 0.129 0.247 0.277

TABLE 8
Performance Comparison, Tuned on Each Metric Itself

Dataset Method fp-nDCG rp-nDCG PRF wPRF

UserQ QDMiner 0.631 0.210 0.360 0.373
QF-I 0.469 0.156 0.433 0.473
QF-J 0.400 0.135 0.343 0.363

RandQ QDMiner 0.640 0.262 0.385 0.409
QF-I 0.417 0.170 0.373 0.416
QF-J 0.348 0.129 0.247 0.277

Fig. 4. Effectiveness of different types of lists.
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generated by aggregating them. The lists within free text of
webpages, which are extracted based on simple sentence
patterns, are short and sometimes noisy. However, they are
generally more informative, and are more useful to users.

5.4 Experiments with List Weighting Methods

We integrate two different components, i.e., document
matching weight and average invert document frequency,
in evaluating the importance of a list in Section 3.3. In this
section, we investigate whether these components are nec-
essary and effective. We experiment with using only of
them, and show the experimental results in Fig. 5. The
results indicate that clustering quality (in terms of NMI and
RI) does not significantly change if each component is used
or not. This confirms our previous conclusion that our WQT
clustering algorithm performs well in most cases. In terms
of ranking quality, we find:

(1) The quality of query facets significantly drops when
IDF is not used (document matching only), which indicates
that the average invert document frequency of items is an
important factor. A list that contains common items in a cor-
pus usually gets a high document matching score because
most items also occur frequently in the top results of the
query. It would be ranked high and generate a useless facet
if we did not consider IDF.

(2) Document matching weight is helpful to improve
quality of query facets. Document matching weight does
not affect the ranking of query facets as big as IDF. This is
because in Eq. (3.5) we use the number of websites (lists) in
ranking query facets. Thus the function of document match-
ing weight is partially overlapped.

5.5 Experiments with Search Result Quantity

We use 100 search results in the above experiments. We fur-
ther experiment with various numbers of results, ranging
from 10 to 100, to investigate whether the quality of query
facets is affected by the quantity of results. Experimental
results are shown in Fig. 6. This figure shows that the num-
ber of results does affect the quality of facets. Query facets
become better if more search results are used. This is
because more results contain more lists and can generate
more facets. More results also provide more evidence for
voting the importance of lists, hence can improve the qual-
ity of facets. The figure also shows that the improvement of
clustering quality becomes subtle when the number of
results is larger than 50. Additional results may help

discover more facet items, but has less impact on the quality
of query facets. Using top 50 results is already enough for
grouping similar lists into correct facets, and most valuable
facets have already been found. Furthermore, the relevance
of later search results also decreases, and the documents
may contain less useful lists.

We find that the purity of query facets (the red series in
Fig. 6) decreases a little bit when more results are used. This
is because when a small number of results are used, some
lists are not merged together but each of them individually
has high purity. When similar lists are grouped based on
more results, a part of puritymay be sacrificed and the gener-
ated facetsmay inevitably include some noise from new lists.

5.6 Experiments with Search Result Quality

QDMiner is based on the assumption that most top results
of a query are relevant. In this section, we investigate
whether our facet mining algorithms are significantly
affected by the quality of search results. We experiment
with the following configurations: (1) Top - using the origi-
nal top K results; (2) TopShuffle - randomly shuffling the
top K results; (3) Random - randomly selecting K results
from the original 100 results and then shuffling them. In
general, the Random method generates worse ranking than
TopShuffle, and both perform worse than Top in ranking
effectiveness.

Fig. 7 shows that method Random is the worst among the
three approaches. We find that Random generates much
less facets than Top and TopShuffle. Consequently, the gen-
erated facets are usually less relevant to the query, and they
also contain less qualified items. Some documents used by
the Random method may have drifted to other irrelevant

Fig. 5. Experiments with list weighting methods. Fig. 6. Experiments with search result quantity.

Fig. 7. Results based on shuffled search results.
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topics. Moreover, Fig. 7 shows that shuffling the top results
(TopShuffle) harms quality of query facets. We assign larger
weights for lists that are extracted from the top-ranked
documents in Eq. (1). TopShuffle method may cause the lists
extracted from less relevant documents to be given higher
weights, which finally affects the quality of query facets. All
these results indicate that the quality of search results does
affect query facets. Their clustering quality is comparable,
and we skip them due to space limitations.

5.7 Experiment with List Duplication

Table 9 shows experimental results of the Context Similarity
Model (denoted with Context) for dimension ranking. Same
to QDMiner (which uses the Unique Website Model), we
use a five-fold cross validation to tune clustering and list
grouping parameters. We find that the context similarity
model significantly outperforms the simple unique website
model, i.e., QDMiner (p < 0:05with the two-tailed paired t-
test). This indicates that quality of query facets can be
improved by considering fine-grained similarity between
lists. By identifying independent groups of lists, we can bet-
ter understand the source of lists, and better estimate the
importance of facets. We further experiment with grouping
the lists by considering the duplication between full page
content, i.e., we use the SimHash of entire pages containing
lists to calculate list similarities. Table 9 shows that the sole
use of page level duplication detection (PageDedup) does
not work as well as the context similarity model. This is
because that using page level similarity can only identify
those near-duplicated pages, but fails to recognize the
duplication between blocks within pages. This confirms our
previous claim that we should not just consider page-level
duplications. We need to use the fine-grained context simi-
larity between lists.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we study the problem of finding query facets.
We propose a systematic solution, which we refer to as
QDMiner, to automatically mine query facets by aggregating
frequent lists from free text, HTML tags, and repeat regions
within top search results. We create two human annotated
data sets and apply existing metrics and two new combined
metrics to evaluate the quality of query facets. Experimental
results show that useful query facets are mined by the
approach. We further analyze the problem of duplicated
lists, and find that facets can be improved by modeling
fine-grained similarities between lists within a facet by com-
paring their similarities. We have provided query facets as
candidate subtopics in theNTCIR-11 IMine Task [39].

As the first approach of finding query facets, QDMiner
can be improved in many aspects. For example, some semi-
supervised bootstrapping list extraction algorithms can be
used to iteratively extract more lists from the top results.
Specific website wrappers can also be employed to extract
high-quality lists from authoritative websites. Adding these
lists may improve both accuracy and recall of query facets.
Part-of-speech information can be used to further check the
homogeneity of lists and improve the quality of query fac-
ets. We will explore these topics to refine facets in the
future. We will also investigate some other related topics to
finding query facets. Good descriptions of query facets may
be helpful for users to better understand the facets. Auto-
matically generate meaningful descriptions is an interesting
research topic.
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