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Abstract

In order for large language model (LLM)-based
assistants to effectively adapt to evolving in-
formation needs, it must be possible to up-
date their factual knowledge through contin-
ued training on new data. The standard recipe
for doing so involves continued pre-training on
new documents followed by instruction-tuning
on question-answer (QA) pairs. However, we
find that LLMs trained with this recipe strug-
gle to answer questions, even though docu-
ments have been memorized perfectly to the
extent that they can be reproduced verbatim.
We found that QA pairs are generally straight-
forward, while documents are often more com-
plex, weaving many factual statements together
in a more intricate manner. Therefore, we hy-
pothesize that it is beneficial to expose LLMs
to QA pairs before continued pre-training on
documents so that the process of encoding
knowledge from complex documents takes
into account how this knowledge is accessed
through questions. Based on this, we propose
pre-instruction-tuning (PIT), a method that
instruction-tunes on questions prior to training
on documents. This contrasts with standard
instruction-tuning, which learns how to extract
knowledge after training on documents. Exten-
sive experiments and ablation studies demon-
strate that pre-instruction-tuning significantly
enhances the ability of LLMs to absorb knowl-
edge from new documents, outperforming stan-
dard instruction-tuning by 17.8%.1

1 Introduction

Large language models (LLMs) store vast amounts
of factual knowledge in their parameters through
large-scale pre-training, and this knowledge can be
used to answer various questions such as “where
is the world’s largest ice sheet located” (Brown

*Majority of the work done during an internship at Meta.
1Code and datasets are available at https://github.com/

jzbjyb/PIT.

et al., 2020; Ouyang et al., 2022; OpenAI, 2023;
Chowdhery et al., 2022; Zhang et al., 2022; Tou-
vron et al., 2023a,b; Gemini Team, 2023). However,
this factual knowledge is static, meaning that it can
become outdated as the world evolves, or prove
insufficient when LLMs are used in specialized or
private domains.

To keep LLMs up-to-date, it is common to con-
tinue pre-training on new documents to store knowl-
edge in parameters, which allows LLMs to effec-
tively answer queries that require up-to-date infor-
mation (Jang et al., 2022). A widely held view
is that the factual knowledge stored in parameters
can be elicited through prompting (Brown et al.,
2020; Petroni et al., 2019; Roberts et al., 2020),
and that instruction-tuning (also known as super-
vised fine-tuning or alignment) makes this elicita-
tion more effective (Sanh et al., 2022; Wei et al.,
2022; Ouyang et al., 2022). In the first part of
this paper (Section 4), we conduct extensive exper-
iments using Llama-2 (Touvron et al., 2023b) to
answer the following question: to what extent can
we augment the knowledge stored in modern LLMs
by continued pre-training on new documents, ei-
ther with or without subsequent instruction-tuning?
We find that, as we train LLMs repeatedly over
documents to the extent that they can reproduce
the documents verbatim, the percentage of ques-
tions regarding those documents that LLMs answer
correctly increases consistently to 27.6%. Sub-
sequent instruction-tuning further improves it to
30.3%, confirming that this widely used practice
is useful to elicit more knowledge from LLMs.2

However, the amount of elicited knowledge is still
limited, even though the actual words of documents
have been memorized perfectly, a phenomenon we

2This capacity might be underestimated by previous works
due to using relatively small LMs or randomly initialized
transformers, or lack of exhaustive training or instruction-
tuning (Wang et al., 2021; Hu et al., 2023; Zhu and Li, 2023a).

https://github.com/jzbjyb/PIT
https://github.com/jzbjyb/PIT
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Figure 1: Illustration of continued pre-training (first row), continued pre-training followed by instruction-tuning
(second row), and pre-instruction-tuning before continued pre-training (last row), along with their accuracies on
evaluation questions. Each right-pointing light-blue triangle indicates a training phase.

refer to as the “memorization curse”.3

In the second part of the paper (Section 5), we
study methods to mitigate the memorization curse
by making LLMs more adept at absorbing knowl-
edge from documents. Zhu and Li (2023a) pre-
sented an intriguing finding that training a ran-
domly initialized transformer from scratch on a
mix of biographies and related questions resulted in
stronger generalization to new questions. However,
understanding the reasons behind this finding and
exploring ways to practically apply it for absorb-
ing knowledge from new documents requires fur-
ther investigation. We found that question-answer
(QA) pairs are generally straightforward and eas-
ily digestible, while documents tend to be more
complex and cluttered, often weaving many fac-
tual statements together in a more intricate man-
ner. Therefore, we hypothesize that it is beneficial
to deliberately expose LLMs to QA data before
continued pre-training on documents so that the
process of encoding knowledge from complex doc-
uments takes into account how this knowledge is
accessed through questions. We refer to this as pre-
instruction-tuning (PIT) and conduct compre-
hensive experiments to benchmark different vari-
ations of this method. As shown in Figure 1, our
best-performing variation starts with training ex-
clusively on QA pairs (e.g., “who handled the edit-
ing of Oppenheimer”) to grasp how knowledge is
accessed. This is followed by training on a combi-
nation of these QA pairs and associated documents
(e.g., “who handled the editing of Oppenheimer”

3Inspired by the “reversal curse” of Berglund et al. (2023).

and a document about “Oppenheimer”). In this
phase, LLMs enhance their ability to absorb knowl-
edge from information-dense documents, building
upon the QA pairs that they have already mastered.
To study continual knowledge acquisition, we build
a dataset named Wiki2023, which includes a collec-
tion of documents from Wikipedia that are relevant
to the year 2023. Comprehensive experiments on
Wiki2023 demonstrate that after pre-instruction-
tuning, LLMs exhibit an enhanced ability to absorb
knowledge from new documents (e.g., a document
about “Barbie”). Detailed ablation studies reveal
that this ability primarily stems from prioritizing
learning how to access knowledge over learning
to encode knowledge from complex documents.
Overall, PIT significantly outperforms the stan-
dard instruction-tuning approach (Subsection 5.1
and Subsection 5.2), improving QA accuracies by
17.8% on Llama-2 7B (30.3% � 48.1%) and 16.3%
on Llama-2 70B (46.4% � 62.7%). Moreover, PIT
also enhances the ability to absorb knowledge from
documents of a different domain, shedding light on
the potential to scale this method up to a wider va-
riety of documents and instructions for more robust
generalization (Subsection 5.4).

2 Building a Dataset to Study Continual
Knowledge Acquisition

To assess the ability of LLMs to learn knowledge
from new documents, it is essential to use a docu-
ment corpus with minimal overlap with the origi-
nal pre-training corpus. This ensures that when
an LLM correctly answers a question, we can
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Figure 2: The Wiki2023 dataset. We list (1) the num-
ber of documents and QA pairs (top-right) along with
frequent keywords in questions (top-left), and (2) the
distribution of token counts in documents, questions,
and answers (bottom).

confidently attribute this capability to its learning
from the new documents, rather than encounter-
ing similar questions or statements in its original
pre-training corpus. In this section we describe
a methodology for building such a corpus from
Wikipedia.

2.1 Wiki2023 Document Corpus
In the experiments detailed in Sections 4 and 5, we
use Llama-2 (7B and 70B) (Touvron et al., 2023b)
since it is one of the best-performing open-source
LLMs available to date. To collect Wikipedia ar-
ticles that are not likely to have been included in
the pre-training corpus of Llama-2, we use those
classified under the “2023” Category including ar-
ticles from diverse domains such as films, arts, eco-
nomics, politics, events, etc.4 The likelihood that
these are not included in the original training cor-
pus is supported by the low QA performance in
Table 1 (9.5%/17.2% for 7B/70B).5 To accelerate
the training process, we only use the first section
of each Wikipedia article, which offers a thorough
summary of the topic and contains many factual
statements. The number of collected documents

4https://en.wikipedia.org/wiki/Category:2023
5It is important to note the difficulty in completely avoid-

ing overlap between Wiki2023 and the pre-training corpus of
Llama-2. For example, a film released in 2023 might have
had information like announcements posted on other websites
before 2023. Data duplication detection is an active research
direction, which falls beyond the focus of this study.

<bos> Oppenheimer ( OP-ԥQ-hy-PԥU) is a 2023 epic biographical 
thriller film written and directed by Christopher Nolan. It stars Cillian 
0XUSK\�DV�-��5REHUW�2SSHQKHLPHU��«�WKH�ILOP�FKURQLFOHV�WKH�FDUHHU�RI�
Oppenheimer, with the story predominantly focusing on his studies, his 
direction of the Manhattan Project during World War II, and his 
HYHQWXDO�IDOO� IURP�JUDFH�GXH�WR�KLV������VHFXULW\�KHDULQJ��«�Editing 
was handled by Jennifer Lame, and the score was composed by 
Ludwig Göransson��«�2SSHQKHLPHU�SUHPLHUHG�DW�/H�*UDQG�5H[�LQ�
Paris on July 11, 2023, and was theatrically released «

<bos> Question: Who wrote and directed the film Oppenheimer?
Answer: Christopher Nolan. <eos>
<bos> Question: Who stars as J. Robert Oppenheimer in the film?
Answer: Cillian Murphy. <eos>
<bos> Question: What aspects of Oppenheimer's life does the film 
focus on?
Answer: His studies, direction of the Manhattan Project, and 1954 
security hearing. <eos>
<bos> Question: Who handled the editing of Oppenheimer?
Answer: Jennifer Lame. <eos>
<bos> Question: When did Oppenheimer premiere in Paris?
Answer: July 11, 2023. <eos>

$Q�H[DPSOH�GRFXPHQW�DERXW�³2SSHQKHLPHU´

([DPSOH�4$�DERXW�³2SSHQKHLPHU´

Figure 3: An example document about “Oppenheimer”
and corresponding QA pairs from Wiki2023. Tokens
used for computing losses are highlighted in green.

and an example document about “Oppenheimer”
can be found in Figure 2 and Figure 3, respec-
tively. We refer to this collection of articles as the
Wiki2023 dataset.

2.2 Wiki2023 Question-answer Pairs

To collect QA pairs for either instruction-tuning
or performance evaluation, we employ ChatGPT
(gpt-3.5-turbo-1106) to generate diverse ques-
tions and their respective answers given the article
as context. We use the following prompt where
{topic} and {summary} are placeholders for the
article’s title and content, respectively:

Prompt 1: question-answer generation prompt

Given the following summary about the subject {topic},
generate a comprehensive list of questions and correspond-
ing answers that cover all aspects. To make the question
clear, always include {topic} in the question. Answers
should be concise, consisting of a few short phrases
separated by commas.

Output in the following format:
Q: an open-domain question about the subject {topic} (the
subject {topic} should always be included)
A: phrase1, phrase2, ...

Summary:
{summary}

On average, 4.93 questions are generated for
each article. Figure 2 and Figure 3 show the de-
tailed statistics and example QA pairs about “Op-
penheimer”, respectively.

https://en.wikipedia.org/wiki/Category:2023


2.3 Splits

Among all domains, we select the film domain
for evaluation and randomly select 256 articles
as the test split (Wiki2023-film-test). We
continually train LLMs on documents from the
test split (Wiki2023-film-test-doc), and assess
their performance based on the accuracy of cor-
responding questions (Wiki2023-film-test-QA).
The remaining 1720 articles and correspond-
ing QA pairs (Wiki2023-film-train) will be
used to study different training strategies, which
corresponds to the in-domain setting in Fig-
ure 2. We also train on other domains
(Wiki2023-other-train) before evaluation on
the film domain (Wiki20230-film-test) to study
the effectiveness of different methods across do-
mains, which corresponds to the cross-domain set-
ting in Figure 2.

3 Experimental Settings

3.1 Objectives

When training on documents, we prepend a <bos>
token and compute the standard next-token predic-
tion loss by averaging over all tokens in the doc-
ument: Ld = −

∑
t logP (dt|d<t)/|d|.6 When

training on QA pairs, we compute the average
negative log-likelihood loss only on tokens in the
answer given the question as the prefix: La =
−
∑

t logP (at|q,a<t)/|a|. Figure 3 presents an
example document alongside QA pairs, where to-
kens used for computing losses are highlighted.

3.2 Hyperparameters

We use AdamW (Loshchilov and Hutter, 2019)
with β1 = 0.9, β2 = 0.95, and a weight decay of
0.1. We decay the learning rate to 10% of its initial
value using a cosine scheduler without warm-up.
When pre-training on documents, we use a batch
size of 256 documents and an initial learning rate
of 3e-5. During instruction-tuning on QA pairs, we
use the same batch size of 256 QA pairs, but opt
for a reduced initial learning rate of 5e-6 because
the number of tokens in a single batch used for
computing losses is lower. The number of epochs
varies depending on the setting and will be detailed
in the subsequent sections.

6We do not append a <eos> token at the end of documents
because we only use the first section, which does not signify
the conclusion of the entire article.

3.3 Evaluation Metrics

At inference time, we use greedy decoding to gen-
erate answers given questions as context, follow-
ing the format in Figure 3.7 Since most questions
are simple factoid questions and most answers are
relatively short, we use exact match (EM) as our
primary metric (Kwiatkowski et al., 2019), which
measures whether the model’s output matches the
gold answer exactly after normalization (e.g., re-
move articles and punctuations). To assess longer
responses and accommodate minor lexical differ-
ences, we also report answer recall, which assesses
if the gold answer appears in the model’s output,
and ROUGE-L, which measures the longest com-
mon subsequence between the model’s output and
the gold answer.

4 How Much Knowledge Can LLMs
Absorb via Continued Pre-training
Followed by Instruction-tuning?

Factual knowledge stored in the parameters of
LLMs can be accessed and applied to answering
questions through prompting without additional
training (Brown et al., 2020; Petroni et al., 2019;
Jiang et al., 2020; Roberts et al., 2020). With addi-
tional instruction-tuning (also known as supervised
fine-tuning) on high-quality data (Sanh et al., 2022;
Wei et al., 2022; Mishra et al., 2022; Kopf et al.,
2023; Chiang et al., 2023), knowledge seems to
be more effectively elicited from LLMs. However,
when LLMs correctly answer a question, the source
of the knowledge is unclear due to the diversity of
the pre-training data. For instance, when answer-
ing the question “where is the world’s largest ice
sheet located”, do LLMs derive their response by
recalling and generalizing information from a seen
document about the Antarctic ice sheet, or do they
merely repeat an answer from a similar question
encountered in the training data? This distinction
is crucial, as the former scenario implies an abil-
ity to comprehend documents and effectively store
knowledge within their parameters in a way that
can be elicited later, whereas the latter is mere rote
memorization.

Several works have studied this problem and the
predominant finding is that LMs struggle to answer
questions about documents they have been trained
on (Wang et al., 2021; Jang et al., 2022; Hu et al.,
2023; Zhu and Li, 2023a; Ovadia et al., 2023). It is

7To evaluate the original Llama-2, we add 5 QA pairs as
in-context exemplars to make sure it follows the QA format.
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Figure 4: Different experimental settings examined in this paper. Each row represents a different experimental
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indicates a training phase. Models are assessed on test QA across all settings. Whenever multiple datasets are
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important to note, however, that these experiments
were mainly conducted using relatively small LMs
such as BART, T5, or GPT-2 (Wang et al., 2021;
Jang et al., 2022; Hu et al., 2023), using randomly
initialized transformers (Zhu and Li, 2023a), or
without instruction-tuning (Ovadia et al., 2023).
This makes us wonder what are the actual limits
of modern LLMs to absorb knowledge from new
documents and answer questions about them using
the standard continued pre-training followed by
instruction-tuning recipe. In this section, we run
extensive experiments using Llama-2 7B and 70B
on Wiki2023-film to test their limits.

4.1 Vanilla Continued Pre-training and
Instruction-tuning

Experimental settings We experiment with two
settings and assess their performance by answer-
ing questions associated with test documents
(Wiki2023-film-test-QA).

• Continued pre-training: train on test documents
without instruction-tuning (Figure 4 ➀).8

• Standard instruction-tuning: train on both train
and test documents before instruction-tuning on
train QA pairs (Figure 4 ➁).

We perform instruction-tuning for a single epoch
since more epochs usually result in diminished per-
formance. For training on documents, we opt for
multiple epochs (10/5 for a 7B/70B model), which
allows for effective memorization and remains af-
fordable for document corpora of moderate sizes.

8We found that LLMs struggle to adhere to the QA format
after training on raw documents for multiple epochs. There-
fore, we include a small set of QA pairs (64) during continued
pre-training to prevent LLMs from forgetting the QA format.

Experimental results As shown in Table 1, the
relatively low performance of the original Llama-
2 model (9.5%/17.2% for 7B/70B) indicates that
most knowledge in the test documents is not in-
cluded in the original pre-training corpus. Af-
ter continued pre-training on documents, perfor-
mances increase to 27.2%/41.7%, indicating that
LLMs can absorb some amount of knowledge
from documents and generalize to related ques-
tions. Instruction-tuning further increases the per-
formance to 30.3%/46.4%, confirming the effec-
tiveness of this standard recipe. This observation is
different from Zhu and Li (2023a), which demon-
strates that instruction-tuning after pre-training is
ineffective on a randomly initialized GPT-2-like
transformer. The difference probably arises be-
cause Llama-2, through its pre-training on diverse
corpora comprising raw documents and QA data,
has developed a certain degree of proficiency in
extracting knowledge from its parameters via ques-
tions. We also report the performance where the
corresponding document is directly provided to
Llama-2 as context, which is denoted as the open-
book setting in Table 1. The significant gap be-
tween closed-book and open-book settings suggests
that retrieving knowledge from the parameters of
LLMs is still challenging.

4.2 Analyzing the Training Dynamics:
Memorization and Generalization

How fast do LLMs memorize documents, and how
does memorization contribute to their ability to
generalize and answer related questions? We vary
the number of epochs (Figure 5(a)) and learning
rate (Figure 5(b)) during continued pre-training on
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Figure 5: We vary the number of epochs (Figure 5(a)) and learning rate (Figure 5(b)) during continued pre-training
on documents to study the ability of LLMs to absorb knowledge from documents. On the left axis, we have
the QA accuracies for test questions, measured by exact match. On the right axis, we display several metrics
indicated by distinct colors: the perplexity of all tokens in the documents, the 1-ROUGE-L score of the reconstructed
documents, and the knowledge retention accuracy, which is the QA accuracy on the Natural Questions dataset. We
highlight situations where LLMs perfectly memorized all documents to the extent of reproducing them verbatim,
as evidenced by a perplexity of 0 and a ROUGE-L score of 1.

documents and monitor three groups of metrics to
study the training dynamics.9

• Knowledge acquisition QA accuracies on test
questions measured by exact match.

• Level of memorization of documents We assess
memorization level using two indicators: the per-
plexity (PPL) of all tokens within the documents
and the ROUGE-L score of documents recon-
structed using the first 5 tokens as a prefix.

• Knowledge retention We approximate the re-
tention of accumulated knowledge during pre-
training by assessing the QA accuracy of ques-
tions from the Natural Questions (NQ) dataset.
This is because NQ, released in 2019, primarily
includes questions based on Wikipedia articles
from that time, which are encompassed by the
pre-training data of Llama-2.

9Since we always decay the learning rate to 10% of its
initial value, training for more epochs is not the same as con-
tinuing training from a checkpoint obtained after fewer epochs.

Llama-2 7B Llama-2 70B
Settings EM Rec. R-L EM Rec. R-L

closed- and open-book performance before training
closed-book 9.5 10.0 21.2 17.2 18.1 31.4
open-book w/ doc 72.2 75.4 91.5 78.2 80.6 94.9

closed-book performance after training
cont. pre-training ➀ 27.6 31.6 43.8 41.7 45.8 60.2

+instruction-tuning ➁ 30.3 34.7 47.4 46.4 50.9 64.1

Table 1: Comparison of QA performance (%) before and
after continued pre-training (Figure 4 ➀) and instruction-
tuning (Figure 4 ➁). Rec. is short for answer recall, and
R-L refers to ROUGE-L.

Experiment results Based on results shown in
Figure 5, we can draw several conclusions:

• As shown in Figure 5(a), QA accuracy consis-
tently improves as perplexity approaches one, in-
dicating that factual knowledge acquisition neces-
sitates exhaustive loss minimization over all to-
kens. This contrasts with learning general skills,
where overly optimizing on the same dataset
leads to overfitting.



• As shown in Figure 5(a) and Figure 5(b), among
all cases where LLMs have memorized entire
documents to the point where they can be re-
produced verbatim (around the 20-30th epoch),
cases trained with more epochs or larger learning
rates typically exhibit superior QA performance.
We hypothesize that more aggressive training
leads to less overfitting to deceptive patterns in
documents and better generalization when re-
sponding to questions.

In summary, memorizing documents in greater
depth does lead to stronger generalization when re-
sponding to questions, but it comes at the expense
of forgetting previously acquired knowledge.

5 Improving LLMs in Absorbing
Knowledge from Documents

The amount of knowledge elicited through the stan-
dard continued pre-training followed by instruction-
tuning is still limited, even though the actual words
of the documents have been memorized perfectly,
a phenomenon we refer to as the “memorization
curse”. Our next question is how can we improve
the ability of LLMs to absorb knowledge from doc-
uments to mitigate the memorization curse. The
main challenge is the gap between the way knowl-
edge is presented in raw documents and how it is ac-
cessed through question-answering. We found that
QA pairs are generally clear and simple to under-
stand, while documents tend to be more complex
and cluttered, often weaving many factual state-
ments together in a more intricate manner. Using
Figure 3 as an example, the answer to the ques-
tion “who handled the editing of Oppenheimer” is
included in a sentence in the middle of the arti-
cle “Editing was handled by Jennifer Lame, and
the score was composed by Ludwig Göransson”.
The sentence does not explicitly mention “Oppen-
heimer”, which means that when training on this
document, LLMs must understand the context and
deduce that “editing” in this case refers to “the edit-
ing of the film Oppenheimer” to effectively encode
this knowledge in the parameters.

Zhu and Li (2023a) studied this problem by train-
ing a randomly initialized GPT-2-like transformer
from scratch on synthetic biographies and evalu-
ated its ability to answer questions about the indi-
viduals. They presented an intriguing finding that
training on a mix of biographies and questions re-
lated to half of those biographies led to stronger
generalization when answering questions about the

remaining half of biographies, which resembles
setting ➃ in Figure 4. In contrast, training on bi-
ographies and QA pairs sequentially completely
failed. However, the key contributor to the success
remains uncertain because the data were blended
together, and it is unclear how to apply this prac-
tically to absorb knowledge from new documents.
Inspired by our observation of the different diffi-
culty levels between QA pairs and documents, and
the empirical finding from Zhu and Li (2023a),
we hypothesize that it is beneficial to deliberately
expose LLMs to instruction-tuning data before con-
tinued pre-training so that the process of encoding
knowledge from complex documents takes into ac-
count how this knowledge is accessed. We refer
to this as pre-instruction-tuning (PIT) and study
various implementations of PIT prior to continued
learning (Subsection 5.1), followed by detailed ab-
lations identifying the keys contributor to perfor-
mance (Subsection 5.2 and Subsection 5.3), and fi-
nally assess how well PIT performs across domains
(Subsection 5.4). We adhere to the hyperparame-
ters outlined in Subsection 3.2 and perform PIT for
3 epochs unless specified otherwise.

5.1 Variants of Pre-instruction-tuning

Pre-instruction-tuning w/ QA only We start
with an implementation that only exposes
instruction-tuning data before continued pre-
training on documents—training on topically re-
lated QA pairs (train QA) before continued pre-
training on test documents (Figure 4 ➄). This
can be directly compared with the continued pre-
training setting (Figure 4 ➀) to evaluate its ef-
fectiveness. The intuition is that these questions
help LLMs recognize key types of information,
enabling LLMs to focus on important informa-
tion during pre-training on subsequent information-
dense documents, even though the questions are
not directly tied to the documents. For example,
training on a question like “who handled the edit-
ing of Oppenheimer” could help LLMs pay atten-
tion to details about screenwriters when training
on new documents like “Barbie”. As shown in
Table 2, this method outperforms continued pre-
training, especially on larger LLMs (27.6%/41.7%
� 28.6%/49.7% for 7B/70B). The ablation that
trains on QA data after training on documents
(“instruction-tuning w/o train doc” in Table 3) is
ineffective, confirming the importance of using top-
ically related questions as a warm-up before encod-
ing documents.



Llama-2 7B Llama-2 70B
Setting names Setting configurations EM Rec. R-L EM Rec. R-L

baselines
continued pre-training ➀ test doc 27.6 31.6 43.8 41.7 45.8 60.2

+instruction-tuning ➁ train doc + test doc � train QA 30.3 34.7 47.4 46.4 50.9 64.1
mix all data ➃ train QA + train doc + test doc 39.4 44.6 56.7 57.1 63.4 72.4

various pre-instruction-tuning (PIT) methods
PIT (QA only) ➄ train QA � test doc 28.6 32.7 45.2 49.7 53.7 67.9
PIT (QA and docs sequentially) ➅ train QA � train doc � test doc 32.5 37.2 49.0 54.6 60.0 73.8
PIT ➆ train QA + train doc � test doc 45.4 51.2 63.2 62.7 68.6 78.8

Table 2: Comparison (%) of various pre-instruction-tuning methods versus standard instruction-tuning methods
using both Llama-2 7B and 70B. The best results are in bold.

Pre-instruction-tuning on QA and documents
sequentially Based on our hypothesis that ex-
posure to QA data benefits knowledge encoding
from documents, our second implementation in-
volves training on QA (train QA) and associated
documents (train doc) sequentially (Figure 4 ➅),
with the intuition that the ability to absorb knowl-
edge from documents can be strengthened if an
LLM is trained on the more complex documents
after it has grasped the associated and simpler QA
pairs. For instance, if an LLM has already learned
that “Jennifer Lame” is the answer to the question
“who handled the editing of Oppenheimer”, training
on the document containing the information “Edit-
ing was handled by Jennifer Lame” can more effi-
ciently refine its storage of knowledge in its param-
eters. As shown in Table 2, pre-instruction-tuning
on QA pairs and documents sequentially surpasses
the QA-only variant (Figure 4 ➄). It also outper-
forms standard instruction-tuning (30.3%/46.4% �
32.5%/54.6% for 7B/70B), demonstrating its effec-
tiveness.

Pre-instruction-tuning The effectiveness of pre-
instruction-tuning depends on ensuring that the as-
sociated QA pairs are already learned before en-
coding the respective documents. However, we
observed that after training on documents (train
doc in Figure 4 ➅), the accuracy for corresponding
questions (train QA in Figure 4 ➅) dropped from
almost perfect to 30%, indicating severe forgetting.
To fix this, we train on the associated QA pairs and
documents together (Figure 4 ➆). As shown in Ta-
ble 2, this significantly improves the performance,
outperforming all other approaches, including mix-
ing all data together (Figure 4 ➃), by a large mar-
gin (39.4%/57.1% � 45.5%/62.7% for 7B/70B).

Training on both QA pairs and documents prevents
forgetting, but it also obscures how the learning
process works. It is unclear whether LLMs grasp
QA pairs before learning how to encode knowl-
edge from documents, or if it works the other way
around. In the following section, we deliberately ar-
range the order of QA pairs and documents during
training to examine this, which leads us to propose
an improved version of pre-instruction-tuning.

5.2 Pre-instruction-tuning++

We first study how the performance varies with
respect to the number of epochs. As shown in Ta-
ble 3, training for one epoch is insufficient, and the
performance when training for 3, 5, or 10 epochs
is similar. We fix the number of epochs to 3 and
arrange the order of QA pairs and corresponding
documents as shown in Figure 6. The interleaved
arrangement cycles through all the data 3 times, en-
suring that in each epoch, questions either precede
or follow their associated documents. On the other
hand, the grouped arrangement clusters each ex-
ample’s 3 appearances together, guaranteeing that
the repeated questions are positioned either before
or after their respective repeated documents. As
shown in Table 3, positioning QA pairs before cor-
responding documents achieves better performance
in both grouped and interleaved arrangements, indi-
cating that during pre-instruction-tuning, the learn-
ing mechanism prioritizes understanding how to
access knowledge before learning to absorb infor-
mation from the more complex and information-
dense documents.

Based on these observations, we propose an
improved variant called pre-instruction-tuning++,
which trains exclusively on QA pairs (train QA)



Setting names Setting configurations EM Rec. R-L

baselines
continued pre-training ➀ test doc 27.6 31.6 43.8

+instruction-tuning ➁ train doc + test doc � train QA 30.3 34.7 47.4
+instruction-tuning (w/o forget) ➂ train doc + test doc � train QA + test doc 30.2 34.1 46.4
+instruction-tuning (w/o train doc) test doc � train QA 27.1 30.7 42.3

weighted continued pre-training test doc (weighted) 27.7 32.7 43.3
adapted continued pre-training train doc � test doc 26.9 32.7 44.2
mix all data ➃ train QA + train doc + test doc 39.4 44.6 56.7

various pre-instruction-tuning (PIT) methods and ablation studies
train QA + train doc (3 epochs) � test doc 45.4 51.2 63.2

ablation studies of the number of epochs
1 epoch 33.3 39.1 50.3
5 epochs 45.8 52.1 63.6
10 pochs 46.5 52.3 61.9

ablation studies of different learning mechanisms
QA before doc (grouped) 38.2 43.2 56.3
QA after doc (grouped) 27.2 31.1 42.1
QA before doc (interleaved) 45.9 51.3 64.5

PIT ➆

QA after doc (interleaved) 43.2 49.1 61.6
PIT-- train QA + train doc � train QA � test doc 44.4 51.3 63.4
PIT++ ➇ train QA � train QA + train doc � test doc 48.1 54.4 66.4

Table 3: Comparison (%) of various pre-instruction-tuning methods and ablation studies to identify the key
contributors to improved performance using Llama-2 7B. Different background colors indicate different pre-
instruction-tuning methods. The best results are in bold.

to understand patterns of knowledge access, then
progresses to training on a combination of QA
and document data to align knowledge retrieval
through questions and knowledge encoding from
documents (Figure 4 ➇). As shown in Table 3,
PIT++ significantly outperforms its original version
(Figure 4 ➆) from 45.4% to 48.1%, while training
on QA data after on the mix (PIT-- in Table 3) does
not yield additional benefits. This reinforces our
hypothesis that understanding how knowledge is
accessed aids in absorbing knowledge from docu-
ments, and therefore, should be prioritized.

5.3 Ablation Studies

Standard instruction-tuning is inferior not due
to forgetting A drawback of standard instruction-
tuning is that knowledge in test documents might be
forgotten after training on QA pairs (a phenomenon
also known as the “alignment tax” (Ouyang et al.,
2022)), which is not a problem in PIT. To show
that the lower performance of standard instruction-
tuning is not due to forgetting, we add a setting
where we mix train QA with test documents during

instruction-tuning to prevent forgetting (Figure 4
➂). As shown in Table 3, this does not help, con-
firming that the inferiority of standard instruction-
tuning is not the result of forgetting.

Pre-instruction-tuning is not learning to simply
upweight salient tokens from documents We
also include an ablation inspired by Hu et al. (2023)
which upweights salient tokens when pre-training
on documents to focus on encoding salient infor-
mation. We assign a weight of 1.0 to tokens in doc-
uments that are included in the answers to the cor-
responding questions (e.g., “Jennifer Lame” in the
sentence “Editing was handled by Jennifer Lame”),
and assign a lower weight of 0.5 to other tokens.
As shown in Table 3, this weighted continued pre-
training is ineffective, confirming that the advan-
tages of pre-instruction-tuning do not stem from
learning to upweight salient tokens.

5.4 Cross-domain Generalization

In previous experiments, we validated the ef-
fectiveness of pre-instruction-tuning by training
and evaluation on data from the same domain
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Llama-2 7B Llama-2 70B
Settings EM Rec. R-L EM Rec. R-L

continued pre-training ➀
- 27.6 31.6 43.8 41.7 45.8 60.2

standard instruction-tuning ➁
in-domain 30.3 34.7 47.4 46.4 50.9 64.1
cross-domain 23.6 28.2 38.4 42.8 49.7 58.5

pre-instruction-tuning ➆
in-domain 45.4 51.2 63.2 62.7 68.6 78.8
cross-domain 36.9 43.2 54.9 55.2 66.7 74.0

Table 4: Pre-instruction-tuning in both in-domain and
cross-domain settings.

(Wiki2023-film). In this section, we ask: can
pre-instruction-tuning make LLMs better at ab-
sorbing knowledge from documents of a differ-
ent domain? To this end, we follow the cross-
domain setting outlined in Figure 2—training on
other domains (Wiki2023-other-train) and test-
ing on the film domain (Wiki2023-film-test).
The results of standard instruction-tuning and pre-
instruction-tuning, in both in-domain and cross-
domain settings, are detailed in Table 4. Even

Settings EM Rec. R-L

generalization to the biography dataset bioS
closed-book 2.9 2.9 11.0
open-book w/ doc 95.2 95.4 95.6
continued pre-training ➀ 29.6 29.8 38.7
pre-instruction-tuning ➆ 58.1 58.4 61.9

generalization to questions by real users from Google
standard instruction-tuning ➁ 21.5 30.1 36.8
pre-instruction-tuning ➆ 29.0 35.5 48.2

Table 5: Generalization of the Llama-2 7B model,
trained with pre-instruction-tuning, to other datasets
and questions posed by real users.

though it is not as effective as the in-domain coun-
terparts, cross-domain PIT still significantly outper-
forms instruction-tuning, demonstrating that it can
generalize across different domains. This finding
sheds light on the potential to scale this method up
to a broader range of documents and instructions
for more robust generalization.

We also evaluate the effectiveness of pre-
instruction-tuning in two distinct scenarios: (1)
when applied to non-Wikipedia documents, and (2)
when addressing questions asked by real users. For
the first scenario, we take the Llama-2 7B model
that has been trained with PIT on 2023Wiki-other
and further train it on synthetic biographies cre-
ated by Zhu and Li (2023a) (bioS). After that, we
evaluate its performance on questions about the
individuals. For the second scenario, we manually
search Google using questions generated by Chat-
GPT from Wiki2023-film-test, collect a total of
93 similar questions from real users by leveraging
Google’s “People Also Ask” feature, and then eval-
uate Llama-2 7B on these questions. As shown in
Table 5, in both scenarios, pre-instruction-tuning
outperforms baselines, demonstrating its general-
ization ability.

6 Related Work

6.1 Continual Knowledge Acquisition

Several works have studied whether LMs can an-
swer questions about information in documents
they have been trained on. Wang et al. (2021);
Jang et al. (2022); Hu et al. (2023) use relatively
small LMs such as BART (Lewis et al., 2020a),
T5 (Raffel et al., 2020), or GPT-2 (Radford et al.,
2019). Ovadia et al. (2023) focus on the compari-
son between RAG and continued pre-training ap-
proaches without using instruction-tuning. Zhu
and Li (2023a,b) examine this problem from a sim-
ilar angle as ours using a GPT-2-like transformer
trained from scratch on synthetic biographies and
fine-tuned on QA pairs related to the individuals.
They examined a mixed training setting on both bi-
ographies and QA pairs, which is our major motiva-
tion to study different strategies to incorporate QA
data before continued pre-training. Other works
study adapting LLMs to new domains via various
strategies (Zhang et al., 2023; Cheng et al., 2023;
Han et al., 2023; Wu et al., 2023; Nguyen et al.,
2023; Zhao et al., 2023).



6.2 Instruction-tuning or Alignment

Instruction-tuning (also known as supervised fine-
tuning) on high-quality annotated data (Sanh et al.,
2022; Wei et al., 2022; Mishra et al., 2022; Iyer
et al., 2022; Kopf et al., 2023; Zhou et al., 2023;
Sun et al., 2023b,a) and/or data generated by pro-
prietary models (Taori et al., 2023; Chiang et al.,
2023; Wang et al., 2023b; Ivison et al., 2023), or
alignment with reinforcement learning from human
feedback (RLHF) or direct preference optimization
(DPO) (Ouyang et al., 2022; Touvron et al., 2023b;
Rafailov et al., 2023; Tian et al., 2023) has been
a central topic recently because it elicits knowl-
edge from LLMs and enhances various abilities to
handle questions from users. We focus on factual-
ity and study the best way to perform instruction-
tuning to elicit factual knowledge from LLMs.

6.3 Analyzing the Training Dynamics of LMs

Many works study the training dynamics of LMs
from different perspectives. Carlini et al. (2022)
quantifies memorization across model sizes and
the frequency of data duplication. Tirumala et al.
(2022) finds that larger LMs memorize training
data faster with less overfitting. Xia et al. (2023)
show that perplexity is more predictive of model
behaviors than other factors. Dery et al. (2022)
studies end-task aware pre-training using classifica-
tion tasks and RoBERTa models. Our work differs
in that we specifically focus on the capacity of re-
calling and generalizing information from a seen
document to answer questions.

6.4 Retrieval-augmented Generation

Retrieval-augmented generation (RAG) is a widely
used approach to incorporate new knowledge into
LLMs by augmenting fixed LLMs with retrieved in-
formation from external sources (Chen et al., 2017;
Guu et al., 2020; Lewis et al., 2020b; Borgeaud
et al., 2022; Wang et al., 2023a; Alon et al., 2022;
He et al., 2021; Sachan et al., 2021; Izacard et al.,
2023; Lee et al., 2022; Jiang et al., 2022; Shi
et al., 2023; Jiang et al., 2023; Asai et al., 2023;
Nakano et al., 2021; Qin et al., 2023; Lin et al.,
2023). While RAG is effective in reducing hal-
lucinations commonly experienced when relying
solely on knowledge stored in parameters, its re-
trieval and generation process adds extra latency
and complexity. In contrast, continued pre-training
to store knowledge in parameters and utilizing the
stored knowledge to answer questions in a closed-

book manner are simpler and faster at inference
time. Enhancing this capability is also scientif-
ically significant, as it represents a fundamental
step in employing LLMs as dependable assistants
for accessing information. Therefore, this paper
focuses on exploring parametric approaches.

7 Conclusion

We study the best way of continued training on new
documents with the goal of later eliciting factual
knowledge and propose pre-instruction-tuning that
learns how knowledge is accessed via QA pairs
prior to encoding knowledge from documents. Ex-
tensive experiments and ablation studies demon-
strate the superiority of pre-instruction-tuning ver-
sus standard instruction-tuning. Future directions
include scaling this method up to a broader range
of documents and instructions for more robust gen-
eralization.

8 Limitations

The Wiki2023 dataset provides a relatively clean
testbed for studying continual knowledge acquisi-
tion. However, its scope is limited to Wikipedia,
which restricts the trained models’ adaptability to
other sources like web pages from Common Crawl
or scientific documents from arXiv. We focus on
eliciting factual knowledge with instruction-tuning
on QA data in this paper. The effectiveness of pre-
instruction-tuning with different types of data for
enhancing other skills like reasoning or compre-
hension is something that needs to be explored in
future studies.
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