Learning to Diversify Search Results via Subtopic Attention

Zhengbao Jiang, Ji-Rong Wen, Zhicheng Dou, Wayne Xin Zhao, Jian-Yun Nie, Ming Yue

Renmin University of China

rucjzb@163.com

Aug 10, 2017

・ロト ・回ト ・ヨト

Outline

Backgrounds

- Problem
- Related Work

Our Approach

- Framework
- Implementation
- Training & Prediction

3 Experiment

- Experiment Settings
- Experimental Results
- Case Study

4 Conclusion

イロト イヨト イヨト イヨ

Search Result Diversification (SRD): aims to retrieve diverse results to satisfy as many different intents as possible.

"Java"

・ロト ・回ト ・ヨト ・

	$\begin{array}{l} \underline{\text{implicit approaches}}\\ \hline \text{doc should be different (novel) form}\\ \hline \text{former ones}\\ \rightarrow \text{doc similarity} \end{array}$	$\frac{\text{explicit approaches}}{\text{doc should cover intents (subtopics)}}$ $\text{unsatisfied by former ones}$ $\rightarrow \text{varied subtopic weights}$		
unsupervised	MMR	IA-Select, xQuAD, PM2, TxQuAD, TPM2, HxQuAD, HPM2, 0-1 MSKP		
supervised	SVM-DIV, R-LTR, PAMM, NTN	*		

- explicit approaches > implicit approaches
 - · using subtopic is a more natural way to handle diversity
 - document similarity (based on "word") \neq document intent similarity
- supervised > unsupervised
 - · avoid heuristic and handcrafted functions and parameters
 - directly optimizing objective function

★ modeling subtopics using supervised learning for SRD

イロト イ団ト イヨト イヨト

Table: Notations.

Notation	Definition
d_t , q , i_k , r	the <i>t</i> -th document, query, <i>k</i> -th subtopic, a ranking
\mathbf{v}_{d_t}	representation of the document at the <i>t</i> -th position.
$\boldsymbol{v}_q, \ \boldsymbol{v}_{i_k}$	representation of the query and the k -th subtopic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

unsupervised explicit methods can be formulated as:

$$\begin{split} S_{\text{unsupervised}}(q, d_t, \mathcal{C}_{t-1}, \mathcal{I}_q) &= \\ (1 - \lambda) S^{\text{rel}}(d_t, q) + & \Rightarrow \text{ relevance} \\ \lambda \sum_{i_k \in \mathcal{I}_q} S^{\text{div}}(d_t, i_k) \underbrace{\mathcal{A}(\mathcal{C}_{t-1}, \mathcal{I}_q)_k,}_{\text{subtopic weights}} & \Rightarrow \text{ diversity} \end{split}$$

• ×QuAD:
$$A(\mathcal{C}_{t-1}, \mathcal{I}_q)_k = P(i_k|q) \prod_{d_j \in \mathcal{C}_{t-1}} (1 - P(d_j|i_k))$$

• PM2: mimics seats allocation of competing political parties drawbacks:

- don't model the selected documents as a sequence
- the functions and parameters are heuristically defined

イロト イヨト イヨト イヨト

(1)

Framework

unsupervised explicit methods can be formulated as:

$$\begin{split} & \mathcal{S}_{\text{unsupervised}}(q, d_t, \mathcal{C}_{t-1}, \mathcal{I}_q) = \\ & (1-\lambda) \mathcal{S}^{\text{rel}}(d_t, q) + \qquad \Rightarrow \text{ relevance} \\ & \lambda \sum_{i_k \in \mathcal{I}_q} \mathcal{S}^{\text{div}}(d_t, i_k) \underbrace{\mathcal{A}(\mathcal{C}_{t-1}, \mathcal{I}_q)_k}_{\text{subtopic weights}}, \qquad \Rightarrow \text{ diversity} \end{split}$$

Document Sequence with Subtopic Attention Framework (DSSA):

$$\begin{aligned} & S_{\text{DSSA}}(q, d_t, \mathcal{C}_{t-1}, \mathcal{I}_q) = s_{d_t} = \\ e & (1 - \lambda) \mathcal{S}^{\text{rel}}(\mathbf{v}_{d_t}, \mathbf{v}_q) + \qquad \Rightarrow \text{relevance} \\ & \gamma & \lambda \mathcal{S}^{\text{div}}\Big(\mathbf{v}_{d_t}, \mathbf{v}_{i_{(\cdot)}}, \underbrace{\mathcal{A}\Big(\mathcal{H}([\mathbf{v}_{d_1}, \dots, \mathbf{v}_{d_{t-1}}]), \mathbf{v}_{i_{(\cdot)}}\Big)}_{\text{subtopic attention}}\Big), \qquad \Rightarrow \text{diversity} \end{aligned}$$

(3)

3 components

- document sequence representation: $h_{t-1} = \mathcal{H}([\mathbf{v}_{d_1}, ..., \mathbf{v}_{d_{t-1}}])$
- subtopic attention: (similar to attention mechanism in NMT) $\boldsymbol{a}_{t,(\cdot)} = \mathcal{A}(\boldsymbol{h}_{t-1}, \boldsymbol{v}_{i_{(\cdot)}})$

• scoring: $\mathcal{S}^{\text{rel}}(\mathbf{v}_{d_t}, \mathbf{v}_q)$ and $\mathcal{S}^{\text{div}}(\mathbf{v}_{d_t}, \mathbf{v}_{i_{(\cdot)}}, \mathbf{a}_{t,(\cdot)})$

Figure: Illustration of DSSA framework.

- document representation v_{d_t}
 - distributed representations (SVD, LDA, and doc2vec): $\pmb{e}_{d_t} \in \mathbb{R}^{E_d}$
 - relevance features (BM25, TF-IDF): $\mathbf{x}_{d_t,q}$ and $\mathbf{x}_{d_t,i_k} \in \mathbb{R}^{\bar{R}}$

total size: $E_d + R + KR$

query and subtopic representation vq, vik

• distributed representations based on retrieved top Z documents: e_q and $e_{i_k} \in \mathbb{R}^{E_q}$ total size: E_q

<ロト <回ト < 回ト < 回ト

oduction document sequence representation

using RNN to encode document sequence (only based on document distributed representation).

$$\boldsymbol{h}_t = \operatorname{tanh}(\boldsymbol{W}^n[\boldsymbol{h}_{t-1}; \boldsymbol{e}_{d_t}] + \boldsymbol{b}^n),$$

Figure: Implementation of DSSA using RNN and max-pooling.

イロト イヨト イヨト イヨ

subtopic attention

1. hidden state: the more similar \pmb{h}_{t-1} and \pmb{e}_{i_k} are, the less attention is will acquire.

$$\mathcal{A}^{'}(\boldsymbol{h}_{t-1}, \boldsymbol{e}_{i_{k}}) = \begin{cases} \boldsymbol{h}_{t-1}^{\mathsf{T}} \boldsymbol{W}^{a} \boldsymbol{e}_{i_{k}}, & (\text{general}) \\ -\boldsymbol{h}_{t-1}^{\mathsf{T}} \cdot \boldsymbol{e}_{i_{k}}, & (\text{dot}) \end{cases}$$

 $2. \ \mbox{relevance}$ feature: use max-pooling to select the most significant signal.

$$\mathcal{A}^{\prime\prime}(\mathbf{x}_{d_{1},i_{k}},...,\mathbf{x}_{d_{t-1},i_{k}}) = \max([\mathbf{x}_{d_{1},i_{k}}^{\mathsf{T}} \cdot \mathbf{w}^{p},...,\mathbf{x}_{d_{t-1},i_{k}}^{\mathsf{T}} \cdot \mathbf{w}^{p}]), \tag{6}$$

3. softmax: obtain probability distribution.

$$\begin{split} a'_{t,k} &= \mathcal{A}'(\mathbf{h}_{t-1}, \mathbf{e}_{i_k}) + \mathcal{A}''(\mathbf{x}_{d_1, i_k}, \dots, \mathbf{x}_{d_{t-1}, i_k}), \\ a_{t,k} &= \frac{w_{i_k} \exp(a'_{t,k})}{\sum_{j=1}^K w_{i_j} \exp(a'_{t,j})} \quad (w_{i_j} \ge 0, \forall j). \end{split}$$

Figure: Implementation of DSSA using RNN and max-pooling.

イロト イヨト イヨト イヨ

scoring

both relevance and diversity score are calculated through distributed representations and relevance features.

$$s_{d_t} = (1-\lambda)s_{d_t}^{\mathsf{rel}} + \lambda s_{d_t}^{\mathsf{div}} \hspace{0.2cm} (0 \leq \lambda \leq 1),$$

1. relevance score: calculate relevance to the query.

$$s_{d_t}^{\mathsf{rel}} = \mathcal{S}^{'}(oldsymbol{e}_{d_t}, oldsymbol{e}_{q}) + oldsymbol{x}_{d_t, q}^{\intercal} \cdot oldsymbol{w}^{r},$$

2. diversity score: calculate relevance to all the subtopics and combine them using attention.

$$\mathbf{s}_{dt}^{\text{div}} = \mathbf{a}_{t,(\cdot)}^{\mathsf{T}} \cdot \begin{bmatrix} S'(\mathbf{e}_{d_{t}}, \mathbf{e}_{i_{1}}) + \mathbf{x}_{d_{t},i_{1}}^{\mathsf{T}} \cdot \mathbf{w}' \\ \vdots \\ S'(\mathbf{e}_{d_{t}}, \mathbf{e}_{i_{K}}) + \mathbf{x}_{d_{t},i_{K}}^{\mathsf{T}} \cdot \mathbf{w}' \end{bmatrix}, \qquad ($$

Figure: Implementation of DSSA using RNN and max-pooling.

• • • • • • • • • • • • •

Given query q, subtopics $i_1, ..., i_K$, sequence of selected documents $d_1, ..., d_{t-1}$, we can calculate the score of a candidate document s_{d_t} using DSSA. How to train these parameters?

- existing optimization methods
 - MLE: maximize the probability of best rankings. Plackett-Luce model:

$$P(r) = \prod_{i=1}^{|r|} \frac{\exp(s_{d_i}^{r[i-1]})}{\sum_{j=i}^{|r|} \exp(s_{d_j}^{r[i-1]})}.$$
(11)

<ロト < 回 > < 回 > < 回 > < 回 >

- PAMM: enlarges the probability margin between positive and negative rankings.
- drawbacks
 - MLE: the number of best rankings is small if we only have hundreds of queries.
 - PAMM: which positive and negative rankings should we sample?

Training

list-pairwise

Sample pairs of rankings that vary only at the last position and treat it as binary claasification problem.

- MLE: list-pairwise can generate abundant training samples.
- PAMM: list-pairwise corresponds better to the decision-making situation in which we have to choose a document under a given context.

Table: Subtopic relevance example.

$doc \ subtopic$	i_1	i ₂	i ₃
d_1	\checkmark	\checkmark	×
d_2			×
d ₃	×	×	
d_4	×	\checkmark	\times

Figure: Pair sample examples of (a) list-pairwise and (b) PAMM.

<ロト </p>

For each query, we sequentially and greedily choose the document with the highest score and append it to the ranking list.

 d_1, d_2, d_3, d_4 d_1

Table: Subtopic relevance example.

doc\subtopic	i_1	<i>i</i> 2	i ₃
d_1	\checkmark	\checkmark	×
d_2			×
d ₃	×	×	
d_4	×	\checkmark	×

・ロト ・回ト ・ヨト ・ヨト

For each query, we sequentially and greedily choose the document with the highest score and append it to the ranking list.

 d_2, d_3, d_4 d_1, d_3

Table: Subtopic relevance example.

doc\subtopic	i_1	<i>i</i> 2	i ₃
d_1	\checkmark	\checkmark	×
d_2			×
d ₃	×	×	
d_4	×	\checkmark	×

・ロト ・回ト ・ヨト ・ヨト

For each query, we sequentially and greedily choose the document with the highest score and append it to the ranking list.

 $\textit{d}_1,\textit{d}_3,\overset{\textit{d}_2,\textit{d}_4}{\underline{\textit{d}}_2}$

Table: Subtopic relevance example.

doc\subtopic	i_1	<i>i</i> 2	i ₃
d_1	\checkmark	\checkmark	×
d_2			×
d ₃	×	×	
d_4	×	\checkmark	×

・ロト ・回ト ・ヨト ・ヨト

For each query, we sequentially and greedily choose the document with the highest score and append it to the ranking list.

 $\textit{d}_1,\textit{d}_3,\textit{d}_3, \textit{d}_4^{\textit{d}_4}$

Table: Subtopic relevance example.

doc\subtopic	i_1	<i>i</i> 2	i ₃
d_1	\checkmark	\checkmark	×
d_2			×
d ₃	×	×	
d_4	×	\checkmark	×

・ロト ・回ト ・ヨト ・ヨト

Dataset

Web Track of TREC 2009-2012, totally 198 queries with binary relevance judgement at subtopic level.

- Evaluation metrics ERR-IA, α-nDCG, NRBP, D[#]-measures, Precision-IA, and Subtopic Recall.
- Baselines
 - unsupervised: Lemur, xQuAD, PM2, TxQuAD, TPM2, HxQuAD, HPM2
 - supervised: ListMLE, R-LTR, PAMM, NTN
- Setting

top 20 of Lemur for training; top 50 of Lemur for prediction. t-test p-value is 0.05.

イロト イヨト イヨト イヨ

Table: Performance comparison of all methods. The best result is in bold. Statistically significant differences between DSSA and baselines are marked with various symbols. \star indicates significant improvement over all baselines.

Methods	ERR-IA	$\alpha ext{-nDCG}$	NRBP	D♯-nDCG	Pre-IA	S-rec
Lemur ^①	.271	.369	.232	.424	.153	.621
ListMLE [®]	.287	.387	.249	.430	.157	.619
xQuAD ^②	.317	.413	.284	.437	.161	.622
TxQuAD ^③	.308	.410	.272	.441	.155	.634
HxQuAD [⊕]	.326	.421	.294	.441	.158	.629
PM2 ⁵	.306	.411	.267	.450	.169	.643
TPM2 [®]	.291	.399	.250	.443	.161	.639
HPM2 ^⑦	.317	.420	.279	.455	.172	.645
R-LTR ^❷	.303	.403	.267	.441	.164	.631
PAMM ^❸	.309	.411	.271	.450	.168	.643
R-LTR-NTN [®]	.312	.415	.275	.451	.166	.644
PAMM-NTN [⊕]	.311	.417	.272	.457	.170	.648
DSSA	.356*	.456*	.326*	.473*	.185*	.649 ⁰²

Effects of Different Settings

Methods	ERR-IA	lpha-nDCG	NRBP	D‡-nDCG	Pre-IA	S-rec
SVD	.348	.450	.315	.470	.184	.646
LDA	.356	.456	.326	.473	.185	.649
doc2vec	.351	.452	.318	.471	.184	.646
general	.356	.456	.326	.473	.185	.649
dot	.347	.450	.314	.470	.184	.647
vanilla	.354	.454	.322	.471	.184	.649
GRU	.357	.457	.326	.473	.185	.649
LSTM	.356	.456	.326	.473	.185	.649
DSSA-RNN	.342	.445	.306	.466	.172	.657
DSSA-RNNMP	.356	.456	.326	.473	.185	.649

Table: Effects of different settings.

Figure: Performance tendency of different settings.

・ロト ・回ト ・ヨト

Figure: Case study for DSSA and PAMM-NTN. White means relevant and black means irrelevant.

Figure: Subtopic attention variation of query #182. The top part is attention and the bottom part is relevance judgment.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Contribution

- first supervised search result diversification framework to model subtopics explicitly.
- an implementation using RNN and max-pooling with attention mechanism which fits our task well.

• Furture work

- more complex implementations on larger datasets.
- learn representations simultaneously.

data and code available at: http://www.playbigdata.com/dou/DSSA/ or https://github.com/jzbjyb/DSSA.

イロト イヨト イヨト イヨト

Question

▲□→ ▲圖→ ▲温→ ▲温→